清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Novel hybrid intelligence predictive model based on successive variational mode decomposition algorithm for monthly runoff series

粒子群优化 算法 计算机科学 水准点(测量) 多层感知器 系列(地层学) 人工神经网络 数学 机器学习 古生物学 生物 大地测量学 地理
作者
Abbas Parsaie,Redvan Ghasemlounia,Amin Gharehbaghi,Amir Hamzeh Haghiabi,Aaron Anil Chadee,Mohammad Rashki Ghale Nou
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:634: 131041-131041 被引量:4
标识
DOI:10.1016/j.jhydrol.2024.131041
摘要

A high-accuracy estimation of the runoff has always been an extremely relevant and challenging subject in hydrology science. Therefore, in the current research, a novel hybrid decomposition-integration-optimization based model is developed to enhance the estimation precision of the runoff. The suggested predictive model is a combination of successive variational mode decomposition (SVMD) technique and Multi-Layer Perceptron neural network (MLP) model integrated with particle swarm optimization (PSO) meta-heuristic algorithm (i.e., hybrid SVMD-MLP-PSO model). To test its performance, the mean monthly runoff data recorded from Sep 1986-Aug 2017 in Dez River basin (MRDRm), southwest of Iran, are used. The performance of the recommended model is also matched with other different hybrid and single models including MLP-PSO, SVMD-MLP, and MLP as the benchmark model. In all models, the sequence-to-one regression module of forecasting (i.e., without using meteorological parameters recorded in the study region) is utilized. In the SVMD based hybrid models, the optimal value of compactness of mode (α) for the original MRDRm time series is achieved at 100. Then, the PACF (partial autocorrelation function) diagram related to the lag length from each decomposed intrinsic mode function (IMF) sub-signals sequence generated is operated to select the ideal input variables. Performance evaluation metrics prove that the hybrid SVMD-MLP-PSO model under the best predictor and meta-parameters, outperformed with an R2 of 0.89, modified 2012 version of Kling-Gupta efficiency (KGEʹ) of 0.83, volumetric efficiency (VE) of 0.91, Nash–Sutcliffe efficiency (NSE) of 0.88, and RMSE of 13.91 m3/s. Comparatively, the standalone MLP as the benchmark model results in an R2 of 0.24, VE of 0.33, KGEʹ of 0.2, NSE of 0.29, and RMSE of 153.39 m3/s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiqiqiqiqi完成签到 ,获得积分10
5秒前
llll完成签到 ,获得积分0
5秒前
三杯吐然诺完成签到 ,获得积分10
7秒前
科研通AI2S应助小鱼女侠采纳,获得10
8秒前
我独舞完成签到 ,获得积分10
17秒前
18秒前
20秒前
可耐的万言完成签到 ,获得积分10
20秒前
sidashu发布了新的文献求助10
23秒前
小鱼女侠发布了新的文献求助10
24秒前
善学以致用应助摆渡人采纳,获得10
24秒前
Edward发布了新的文献求助10
25秒前
Hello应助胡泳旭采纳,获得10
26秒前
妮妮完成签到 ,获得积分10
28秒前
fuws完成签到 ,获得积分10
29秒前
研友_LmVygn完成签到 ,获得积分10
33秒前
34秒前
Aiden完成签到 ,获得积分10
36秒前
安静的ky完成签到,获得积分10
37秒前
无花果应助sidashu采纳,获得10
45秒前
结实凌瑶完成签到 ,获得积分10
53秒前
1分钟前
gujianhua发布了新的文献求助10
1分钟前
摆渡人发布了新的文献求助10
1分钟前
沐浠完成签到 ,获得积分10
1分钟前
zm完成签到 ,获得积分10
1分钟前
andre20完成签到 ,获得积分10
1分钟前
宇文鹏煊完成签到 ,获得积分10
1分钟前
1分钟前
gujianhua完成签到,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
科研通AI6应助老10采纳,获得10
1分钟前
shadow完成签到,获得积分10
1分钟前
芬芬完成签到 ,获得积分10
1分钟前
自由盼夏完成签到 ,获得积分10
1分钟前
你好你好完成签到 ,获得积分10
1分钟前
Alex-Song完成签到 ,获得积分0
1分钟前
哥哥发布了新的文献求助10
1分钟前
sadh2完成签到 ,获得积分10
1分钟前
摆渡人发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771608
捐赠科研通 4615167
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467551