Novel hybrid intelligence predictive model based on successive variational mode decomposition algorithm for monthly runoff series

粒子群优化 算法 计算机科学 水准点(测量) 多层感知器 系列(地层学) 人工神经网络 数学 机器学习 大地测量学 生物 古生物学 地理
作者
Abbas Parsaie,Redvan Ghasemlounia,Amin Gharehbaghi,Amir Hamzeh Haghiabi,Aaron Anil Chadee,Mohammad Rashki Ghale Nou
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:634: 131041-131041 被引量:4
标识
DOI:10.1016/j.jhydrol.2024.131041
摘要

A high-accuracy estimation of the runoff has always been an extremely relevant and challenging subject in hydrology science. Therefore, in the current research, a novel hybrid decomposition-integration-optimization based model is developed to enhance the estimation precision of the runoff. The suggested predictive model is a combination of successive variational mode decomposition (SVMD) technique and Multi-Layer Perceptron neural network (MLP) model integrated with particle swarm optimization (PSO) meta-heuristic algorithm (i.e., hybrid SVMD-MLP-PSO model). To test its performance, the mean monthly runoff data recorded from Sep 1986-Aug 2017 in Dez River basin (MRDRm), southwest of Iran, are used. The performance of the recommended model is also matched with other different hybrid and single models including MLP-PSO, SVMD-MLP, and MLP as the benchmark model. In all models, the sequence-to-one regression module of forecasting (i.e., without using meteorological parameters recorded in the study region) is utilized. In the SVMD based hybrid models, the optimal value of compactness of mode (α) for the original MRDRm time series is achieved at 100. Then, the PACF (partial autocorrelation function) diagram related to the lag length from each decomposed intrinsic mode function (IMF) sub-signals sequence generated is operated to select the ideal input variables. Performance evaluation metrics prove that the hybrid SVMD-MLP-PSO model under the best predictor and meta-parameters, outperformed with an R2 of 0.89, modified 2012 version of Kling-Gupta efficiency (KGEʹ) of 0.83, volumetric efficiency (VE) of 0.91, Nash–Sutcliffe efficiency (NSE) of 0.88, and RMSE of 13.91 m3/s. Comparatively, the standalone MLP as the benchmark model results in an R2 of 0.24, VE of 0.33, KGEʹ of 0.2, NSE of 0.29, and RMSE of 153.39 m3/s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LOWRY发布了新的文献求助10
刚刚
郑浩龙完成签到,获得积分20
刚刚
阿尔宙斯发布了新的文献求助10
1秒前
keyanbrant完成签到 ,获得积分10
1秒前
Li发布了新的文献求助20
2秒前
善学以致用应助艾亚亚采纳,获得10
4秒前
李爱国应助111采纳,获得10
4秒前
5秒前
5秒前
NexusExplorer应助霸气的又琴采纳,获得10
6秒前
6秒前
8秒前
Valan发布了新的文献求助10
9秒前
Akim应助俊逸的盛男采纳,获得10
9秒前
晨晨发布了新的文献求助10
9秒前
fan完成签到,获得积分10
9秒前
10秒前
10秒前
星星完成签到 ,获得积分10
10秒前
Stella应助科研通管家采纳,获得30
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
wxyshare应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得30
11秒前
慕青应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
小纪应助科研通管家采纳,获得10
11秒前
核桃应助科研通管家采纳,获得10
11秒前
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360485
求助须知:如何正确求助?哪些是违规求助? 4491088
关于积分的说明 13981391
捐赠科研通 4393724
什么是DOI,文献DOI怎么找? 2413597
邀请新用户注册赠送积分活动 1406430
关于科研通互助平台的介绍 1380915