Novel hybrid intelligence predictive model based on successive variational mode decomposition algorithm for monthly runoff series

粒子群优化 算法 计算机科学 水准点(测量) 多层感知器 系列(地层学) 人工神经网络 数学 机器学习 古生物学 生物 大地测量学 地理
作者
Abbas Parsaie,Redvan Ghasemlounia,Amin Gharehbaghi,Amir Hamzeh Haghiabi,Aaron Anil Chadee,Mohammad Rashki Ghale Nou
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:634: 131041-131041 被引量:4
标识
DOI:10.1016/j.jhydrol.2024.131041
摘要

A high-accuracy estimation of the runoff has always been an extremely relevant and challenging subject in hydrology science. Therefore, in the current research, a novel hybrid decomposition-integration-optimization based model is developed to enhance the estimation precision of the runoff. The suggested predictive model is a combination of successive variational mode decomposition (SVMD) technique and Multi-Layer Perceptron neural network (MLP) model integrated with particle swarm optimization (PSO) meta-heuristic algorithm (i.e., hybrid SVMD-MLP-PSO model). To test its performance, the mean monthly runoff data recorded from Sep 1986-Aug 2017 in Dez River basin (MRDRm), southwest of Iran, are used. The performance of the recommended model is also matched with other different hybrid and single models including MLP-PSO, SVMD-MLP, and MLP as the benchmark model. In all models, the sequence-to-one regression module of forecasting (i.e., without using meteorological parameters recorded in the study region) is utilized. In the SVMD based hybrid models, the optimal value of compactness of mode (α) for the original MRDRm time series is achieved at 100. Then, the PACF (partial autocorrelation function) diagram related to the lag length from each decomposed intrinsic mode function (IMF) sub-signals sequence generated is operated to select the ideal input variables. Performance evaluation metrics prove that the hybrid SVMD-MLP-PSO model under the best predictor and meta-parameters, outperformed with an R2 of 0.89, modified 2012 version of Kling-Gupta efficiency (KGEʹ) of 0.83, volumetric efficiency (VE) of 0.91, Nash–Sutcliffe efficiency (NSE) of 0.88, and RMSE of 13.91 m3/s. Comparatively, the standalone MLP as the benchmark model results in an R2 of 0.24, VE of 0.33, KGEʹ of 0.2, NSE of 0.29, and RMSE of 153.39 m3/s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矮小的安柏完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
zz完成签到 ,获得积分10
3秒前
整齐百褶裙完成签到 ,获得积分10
4秒前
DT完成签到 ,获得积分10
4秒前
无花果应助星空采纳,获得10
4秒前
大雪完成签到 ,获得积分10
4秒前
特大包包完成签到 ,获得积分10
4秒前
liuz53完成签到,获得积分10
5秒前
单薄靖儿完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
w尘发布了新的文献求助10
8秒前
tian完成签到,获得积分10
8秒前
852应助一个小胖子采纳,获得10
9秒前
子非鱼完成签到,获得积分10
9秒前
abb完成签到 ,获得积分10
10秒前
曹毅凯完成签到,获得积分10
10秒前
夏日汽水完成签到 ,获得积分10
10秒前
张一亦可完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
开放芝麻完成签到 ,获得积分10
12秒前
LLLL完成签到,获得积分20
12秒前
13秒前
13秒前
14秒前
wwsss完成签到,获得积分10
15秒前
Polylactic完成签到 ,获得积分10
16秒前
星空发布了新的文献求助10
17秒前
哈哈哈完成签到,获得积分10
18秒前
澄钰羽完成签到,获得积分10
19秒前
加减乘除发布了新的文献求助10
19秒前
肥鹏完成签到,获得积分10
20秒前
能干世倌完成签到,获得积分10
21秒前
杨玉轩完成签到,获得积分10
21秒前
彪壮的绮烟完成签到,获得积分10
21秒前
饭煲完成签到,获得积分10
21秒前
李健应助TT采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131