Novel hybrid intelligence predictive model based on successive variational mode decomposition algorithm for monthly runoff series

粒子群优化 算法 计算机科学 水准点(测量) 多层感知器 系列(地层学) 人工神经网络 数学 机器学习 大地测量学 生物 古生物学 地理
作者
Abbas Parsaie,Redvan Ghasemlounia,Amin Gharehbaghi,Amir Hamzeh Haghiabi,Aaron Anil Chadee,Mohammad Rashki Ghale Nou
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:634: 131041-131041 被引量:4
标识
DOI:10.1016/j.jhydrol.2024.131041
摘要

A high-accuracy estimation of the runoff has always been an extremely relevant and challenging subject in hydrology science. Therefore, in the current research, a novel hybrid decomposition-integration-optimization based model is developed to enhance the estimation precision of the runoff. The suggested predictive model is a combination of successive variational mode decomposition (SVMD) technique and Multi-Layer Perceptron neural network (MLP) model integrated with particle swarm optimization (PSO) meta-heuristic algorithm (i.e., hybrid SVMD-MLP-PSO model). To test its performance, the mean monthly runoff data recorded from Sep 1986-Aug 2017 in Dez River basin (MRDRm), southwest of Iran, are used. The performance of the recommended model is also matched with other different hybrid and single models including MLP-PSO, SVMD-MLP, and MLP as the benchmark model. In all models, the sequence-to-one regression module of forecasting (i.e., without using meteorological parameters recorded in the study region) is utilized. In the SVMD based hybrid models, the optimal value of compactness of mode (α) for the original MRDRm time series is achieved at 100. Then, the PACF (partial autocorrelation function) diagram related to the lag length from each decomposed intrinsic mode function (IMF) sub-signals sequence generated is operated to select the ideal input variables. Performance evaluation metrics prove that the hybrid SVMD-MLP-PSO model under the best predictor and meta-parameters, outperformed with an R2 of 0.89, modified 2012 version of Kling-Gupta efficiency (KGEʹ) of 0.83, volumetric efficiency (VE) of 0.91, Nash–Sutcliffe efficiency (NSE) of 0.88, and RMSE of 13.91 m3/s. Comparatively, the standalone MLP as the benchmark model results in an R2 of 0.24, VE of 0.33, KGEʹ of 0.2, NSE of 0.29, and RMSE of 153.39 m3/s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
CCY完成签到,获得积分10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
刚刚
long应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
Wind应助小鲤鱼采纳,获得20
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
Lyg发布了新的文献求助10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
淡定从凝完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
wnche完成签到,获得积分10
2秒前
月光族完成签到,获得积分10
2秒前
小小完成签到,获得积分20
2秒前
2秒前
Oil发布了新的文献求助10
2秒前
领导范儿应助向阳采纳,获得10
2秒前
1111完成签到,获得积分10
3秒前
4秒前
阿治发布了新的文献求助10
5秒前
SRY完成签到,获得积分10
5秒前
可爱的从寒完成签到,获得积分10
6秒前
6秒前
Hello应助burger采纳,获得10
6秒前
1111发布了新的文献求助20
7秒前
后夜完成签到,获得积分10
7秒前
橙熟完成签到,获得积分10
7秒前
7秒前
7秒前
浅眸流年完成签到,获得积分10
8秒前
缥缈的绿兰完成签到,获得积分10
8秒前
差点长成帅哥完成签到,获得积分10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167