Novel hybrid intelligence predictive model based on successive variational mode decomposition algorithm for monthly runoff series

粒子群优化 算法 计算机科学 水准点(测量) 多层感知器 系列(地层学) 人工神经网络 数学 机器学习 古生物学 生物 大地测量学 地理
作者
Abbas Parsaie,Redvan Ghasemlounia,Amin Gharehbaghi,Amir Hamzeh Haghiabi,Aaron Anil Chadee,Mohammad Rashki Ghale Nou
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:634: 131041-131041 被引量:4
标识
DOI:10.1016/j.jhydrol.2024.131041
摘要

A high-accuracy estimation of the runoff has always been an extremely relevant and challenging subject in hydrology science. Therefore, in the current research, a novel hybrid decomposition-integration-optimization based model is developed to enhance the estimation precision of the runoff. The suggested predictive model is a combination of successive variational mode decomposition (SVMD) technique and Multi-Layer Perceptron neural network (MLP) model integrated with particle swarm optimization (PSO) meta-heuristic algorithm (i.e., hybrid SVMD-MLP-PSO model). To test its performance, the mean monthly runoff data recorded from Sep 1986-Aug 2017 in Dez River basin (MRDRm), southwest of Iran, are used. The performance of the recommended model is also matched with other different hybrid and single models including MLP-PSO, SVMD-MLP, and MLP as the benchmark model. In all models, the sequence-to-one regression module of forecasting (i.e., without using meteorological parameters recorded in the study region) is utilized. In the SVMD based hybrid models, the optimal value of compactness of mode (α) for the original MRDRm time series is achieved at 100. Then, the PACF (partial autocorrelation function) diagram related to the lag length from each decomposed intrinsic mode function (IMF) sub-signals sequence generated is operated to select the ideal input variables. Performance evaluation metrics prove that the hybrid SVMD-MLP-PSO model under the best predictor and meta-parameters, outperformed with an R2 of 0.89, modified 2012 version of Kling-Gupta efficiency (KGEʹ) of 0.83, volumetric efficiency (VE) of 0.91, Nash–Sutcliffe efficiency (NSE) of 0.88, and RMSE of 13.91 m3/s. Comparatively, the standalone MLP as the benchmark model results in an R2 of 0.24, VE of 0.33, KGEʹ of 0.2, NSE of 0.29, and RMSE of 153.39 m3/s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
zzzq应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
hzauhzau发布了新的文献求助10
刚刚
刚刚
秀丽千山发布了新的文献求助10
刚刚
饭小心发布了新的文献求助10
刚刚
叶梓发布了新的文献求助10
刚刚
jy发布了新的文献求助10
刚刚
1秒前
1秒前
桐桐完成签到,获得积分0
1秒前
复杂天真应助iuhgnor采纳,获得10
2秒前
科研通AI5应助SCI采纳,获得10
2秒前
彭于晏应助灵巧荆采纳,获得10
2秒前
JamesPei应助Rrr采纳,获得10
3秒前
小蝴蝶完成签到 ,获得积分10
3秒前
赤邪发布了新的文献求助10
4秒前
dingdong发布了新的文献求助10
4秒前
爆米花应助phil采纳,获得10
5秒前
科研通AI5应助wang采纳,获得10
5秒前
6秒前
6秒前
Wxx发布了新的文献求助10
6秒前
兜兜完成签到,获得积分10
7秒前
dingdong发布了新的文献求助10
7秒前
7秒前
yuan发布了新的文献求助20
8秒前
HUAJIAO完成签到,获得积分10
8秒前
街舞腹肌修道帅哥完成签到,获得积分10
8秒前
zhangyulu完成签到 ,获得积分10
9秒前
9秒前
独特不斜完成签到,获得积分10
9秒前
海底落日发布了新的文献求助30
9秒前
共享精神应助紧张的妖妖采纳,获得10
9秒前
耶耶粘豆包完成签到 ,获得积分10
10秒前
dingdong发布了新的文献求助10
11秒前
xunxunmimi发布了新的文献求助50
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794