Novel hybrid intelligence predictive model based on successive variational mode decomposition algorithm for monthly runoff series

粒子群优化 算法 计算机科学 水准点(测量) 多层感知器 系列(地层学) 人工神经网络 数学 机器学习 古生物学 生物 大地测量学 地理
作者
Abbas Parsaie,Redvan Ghasemlounia,Amin Gharehbaghi,Amir Hamzeh Haghiabi,Aaron Anil Chadee,Mohammad Rashki Ghale Nou
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:634: 131041-131041 被引量:4
标识
DOI:10.1016/j.jhydrol.2024.131041
摘要

A high-accuracy estimation of the runoff has always been an extremely relevant and challenging subject in hydrology science. Therefore, in the current research, a novel hybrid decomposition-integration-optimization based model is developed to enhance the estimation precision of the runoff. The suggested predictive model is a combination of successive variational mode decomposition (SVMD) technique and Multi-Layer Perceptron neural network (MLP) model integrated with particle swarm optimization (PSO) meta-heuristic algorithm (i.e., hybrid SVMD-MLP-PSO model). To test its performance, the mean monthly runoff data recorded from Sep 1986-Aug 2017 in Dez River basin (MRDRm), southwest of Iran, are used. The performance of the recommended model is also matched with other different hybrid and single models including MLP-PSO, SVMD-MLP, and MLP as the benchmark model. In all models, the sequence-to-one regression module of forecasting (i.e., without using meteorological parameters recorded in the study region) is utilized. In the SVMD based hybrid models, the optimal value of compactness of mode (α) for the original MRDRm time series is achieved at 100. Then, the PACF (partial autocorrelation function) diagram related to the lag length from each decomposed intrinsic mode function (IMF) sub-signals sequence generated is operated to select the ideal input variables. Performance evaluation metrics prove that the hybrid SVMD-MLP-PSO model under the best predictor and meta-parameters, outperformed with an R2 of 0.89, modified 2012 version of Kling-Gupta efficiency (KGEʹ) of 0.83, volumetric efficiency (VE) of 0.91, Nash–Sutcliffe efficiency (NSE) of 0.88, and RMSE of 13.91 m3/s. Comparatively, the standalone MLP as the benchmark model results in an R2 of 0.24, VE of 0.33, KGEʹ of 0.2, NSE of 0.29, and RMSE of 153.39 m3/s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘爱实验完成签到,获得积分10
1秒前
咖啡豆应助科研通管家采纳,获得10
2秒前
2秒前
咖啡豆应助科研通管家采纳,获得10
2秒前
小鹏哥完成签到,获得积分10
2秒前
我爱学习完成签到 ,获得积分10
3秒前
不配.应助sp采纳,获得10
7秒前
科目三应助墨竹采纳,获得10
9秒前
我是老大应助小福子采纳,获得10
9秒前
大头完成签到 ,获得积分10
11秒前
12秒前
13秒前
14秒前
zdz完成签到,获得积分10
17秒前
17秒前
AZX加油完成签到,获得积分10
18秒前
freeaway完成签到,获得积分10
19秒前
19秒前
sllytn应助NN采纳,获得30
20秒前
MoXian完成签到,获得积分10
20秒前
安静的瑾瑜完成签到 ,获得积分10
21秒前
JhShang完成签到 ,获得积分10
24秒前
25秒前
25秒前
wulixin完成签到,获得积分10
26秒前
27秒前
疯惊发布了新的文献求助30
28秒前
sam发布了新的文献求助30
28秒前
开心应助南瓜汤采纳,获得10
28秒前
Frisk12sfs发布了新的文献求助10
29秒前
深情安青应助zane采纳,获得10
33秒前
科研通AI2S应助小眼儿采纳,获得10
33秒前
陈小鱼干发布了新的文献求助10
34秒前
Frisk12sfs完成签到,获得积分10
34秒前
麻雀发布了新的文献求助10
34秒前
华hgger发布了新的文献求助10
35秒前
ZSQ完成签到 ,获得积分10
35秒前
znchick完成签到,获得积分10
37秒前
Monica完成签到,获得积分10
38秒前
Eason完成签到,获得积分10
41秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791116
关于积分的说明 7798129
捐赠科研通 2447583
什么是DOI,文献DOI怎么找? 1301980
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194