Network partition and distributed voltage coordination control strategy of active distribution network system considering photovoltaic uncertainty

光伏系统 网络分区 分拆(数论) 电压 分布式发电 分布(数学) 控制(管理) 计算机科学 分布式计算 控制理论(社会学) 工程类 电气工程 可再生能源 数学 人工智能 数学分析 组合数学
作者
Lingzhuochao Meng,Xiyun Yang,Jiang Zhu,Xinzhe Wang,Xin Meng
出处
期刊:Applied Energy [Elsevier]
卷期号:362: 122846-122846 被引量:3
标识
DOI:10.1016/j.apenergy.2024.122846
摘要

Aiming at the voltage exceeding problem caused by the introduction of Photovoltaic (PV) in Active distribution network (ADN), a comprehensive electrical distance index was established considering active and reactive voltage sensitivity, and the uncertainty of traditional PV probability density function (PDF) was optimized by random simulation method. The electrical distance expectation matrix between nodes was established by discretization of PV output probability distribution characteristics, and the ADN system was partitioned by affinity propagation (AP) algorithm. Taking active power loss as the objective function, the non-convex reactive power optimization control problem is transformed into a convex quadratic programming problem by LinDistFlow equation. An improved alternating direction method of multipliers (ADMM) which adaptively adjusts the penalty parameters is used to convert the finite boundaries of adjacent regions into data. By coordinating on-load tap-changer (OLTC), capacitor banks (CBs), and PV inverters on different time scales, the fast optimal control of global voltage in ADN is realized. The proposed method is tested on IEEE 33-bus and IEEE 123-bus distribution systems. After the optimization control algorithm described in this paper, the system network loss was reduced by 3.88%. Compared with the semi-definite programming relaxation, the calculation speed of LinDistFlow equation is increased by 72.2%. The results fully verify the feasibility and high efficiency of the control strategy described in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
富贵儿发布了新的文献求助10
刚刚
冯度翩翩完成签到,获得积分10
刚刚
sweetbearm应助健壮的涑采纳,获得10
刚刚
村里傻小子完成签到,获得积分20
刚刚
田様应助Khr1stINK采纳,获得10
1秒前
傲娇的凡旋应助小周采纳,获得10
2秒前
潇潇潇完成签到 ,获得积分10
2秒前
3秒前
英俊的铭应助XShu采纳,获得10
4秒前
Hello应助一只大肥猫采纳,获得10
5秒前
allyceacheng完成签到,获得积分10
5秒前
科研通AI5应助phd采纳,获得10
6秒前
6秒前
WTaMi完成签到 ,获得积分10
6秒前
zoe发布了新的文献求助10
6秒前
Owen应助无奈的酒窝采纳,获得10
7秒前
8秒前
10秒前
10秒前
10秒前
科研通AI5应助wangyanwxy采纳,获得10
11秒前
36456657应助豆dou采纳,获得10
11秒前
12秒前
12秒前
13秒前
buno应助jy采纳,获得10
14秒前
paparazzi221发布了新的文献求助10
15秒前
田生完成签到,获得积分10
15秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
15秒前
15秒前
爆米花应助towerman采纳,获得10
16秒前
羊笨笨完成签到 ,获得积分10
16秒前
17秒前
光亮芷天完成签到,获得积分10
17秒前
17秒前
18秒前
粗犷的问夏完成签到,获得积分10
19秒前
知行合一完成签到 ,获得积分10
20秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808