Deep Learning Design for Multiwavelength Infrared Image Sensors Based on Dielectric Freeform Metasurface

多光谱图像 材料科学 多路复用 红外线的 小型化 光学 像素 电介质 光电子学 波长 纳米光子学 计算机科学 人工智能 纳米技术 物理 电信
作者
Bo Xiong,Yihao Xu,Wenwen Li,Wei Ma,Tao Chu,Yongmin Liu
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:12 (10) 被引量:5
标识
DOI:10.1002/adom.202302200
摘要

Abstract Near‐infrared multispectral imaging technology enhances target detection and recognition by distinguishing the spectral characteristics of various targets. However, traditional imaging systems heavily rely on complex optical filter designs that are often bulky and mechanically unstable, posing significant challenges for miniaturization and integration challenging. In this study, a freeform dielectric metasurface with the wavelength‐multiplexing focusing effect based on a deep learning model is designed, which can separate the mixed near‐infrared light into distinct wavelengths. To effectively modulate the complex amplitude of the transmitted light at three distinct near‐infrared wavelengths (1150, 1350, and 1550 nm), high‐index silicon freeform nanostructures supporting rich resonant modes are proposed. An inverse design model based on deep learning is utilized to generate individual freeform nanostructures pixel by pixel, satisfying the complex amplitude requirement for a multiplexed metalens design. Both the simulated and experimental results show that the wavelength‐multiplexing effect of the devices is in good agreement with the target with negligible crosstalk. Finally, a metasurface is employed to realize near‐infrared multispectral imaging, which allows for the distinct detection and decoding of images at the three target wavelengths. The proposed technology has a wide range of applications in clinical medicine, biological tissue imaging, and deep‐space exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助BaiX采纳,获得10
刚刚
大工梧桐发布了新的文献求助10
刚刚
香蕉君达完成签到,获得积分10
刚刚
1秒前
小马甲应助愉快的定帮采纳,获得10
1秒前
科目三应助自由刺猬采纳,获得20
2秒前
futing完成签到,获得积分10
2秒前
老鼠爱吃fish完成签到,获得积分10
2秒前
xiaoou完成签到,获得积分10
2秒前
科研通AI2S应助VDC采纳,获得10
3秒前
3秒前
胡天萌完成签到 ,获得积分10
3秒前
正义的小怪兽完成签到,获得积分20
3秒前
wanci应助刘星星采纳,获得10
3秒前
完美世界应助jekyll采纳,获得10
4秒前
自然怀梦完成签到,获得积分10
4秒前
4秒前
neo完成签到,获得积分10
5秒前
完美世界应助lyn采纳,获得30
5秒前
情怀应助Jackcaosky采纳,获得200
5秒前
123发布了新的文献求助10
5秒前
buno应助hhh采纳,获得10
6秒前
SYLH应助wltwb采纳,获得10
6秒前
Rui发布了新的文献求助10
6秒前
斯文败类应助快乐小文采纳,获得30
6秒前
8秒前
尹天扬完成签到,获得积分10
9秒前
9秒前
大方大船完成签到,获得积分10
10秒前
Sigyn完成签到,获得积分10
10秒前
顺利琦发布了新的文献求助10
10秒前
10秒前
自由完成签到,获得积分20
11秒前
Volta_zz完成签到,获得积分10
11秒前
11秒前
欣欣子完成签到,获得积分10
12秒前
13秒前
111完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678