EEG emotion recognition based on Ordinary Differential Equation Graph Convolutional Networks and Dynamic Time Wrapping

邻接矩阵 计算机科学 颂歌 模式识别(心理学) 平滑的 欧几里德距离 图形 人工智能 脑电图 邻接表 算法 数学 理论计算机科学 计算机视觉 应用数学 心理学 精神科
作者
Yiyuan Chen,Xiaodong Xu,Xiaoyi Bian,Xiaowei Qin
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:152: 111181-111181 被引量:7
标识
DOI:10.1016/j.asoc.2023.111181
摘要

Graph Convolutional Network (GCN) has been extensively utilized to extract relations among electroencephalography (EEG) electrode channels for its strong ability to handle non-Euclidean data. However, GCN still has some issues when it comes to extracting features from EEG signals: (1) GCN with more layers may experience over-smoothing, restricting its ability to mine longer dependency relations. (2) At the moment, most GCNs used to process EEG signals construct adjacency matrices by Euclidean distance, only considering the correlations on the feature domain while ignoring changes of signals over the entire time window. To address the issues above, we introduce an Ordinary Differential Equation (ODE) based GCN, which can perfectly eliminate the over-smoothing problem of the traditional GCN. Besides, we also propose a method based on Dynamic Time Wrapping (DTW) algorithm to construct an adjacency matrix in the time domain. To handle adjacency matrices calculated by Euclidean distance and DTW distance respectively, we apply a temporal–spatial model composed of two parallel modules each containing an ODE-based GCN and Long short-term memory neural networks (LSTM) network in turn. We conducted experiments on three public datasets. The results show that our methods have achieved an improvement of 2.19%/2.77%/2.13%/2.01% on Arousal/Valence/Dominance/Liking on DEAP dataset, 1.43% on SEED dataset and 3.06%/3.27% on Arousal/Valence on DREAMER dataset compared with state-of-the-art (SOTA) baseline methods. It demonstrates that our method can effectively approve the performance to handle the relations between EEG channels. The premise of the ODE-based GCN is that signal changes of all EEG channels should be continuous rather than abrupt. We believe that it conforms to the EEG mode, as it is activated by the same emotion stimulation while being collected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12345完成签到,获得积分10
刚刚
Dloftdv完成签到 ,获得积分10
1秒前
小杭76应助wocao采纳,获得10
1秒前
黄丹丽发布了新的文献求助10
1秒前
tkxfy完成签到,获得积分10
2秒前
顺利毕业耶耶耶完成签到,获得积分10
2秒前
QAQ发布了新的文献求助30
3秒前
Rn发布了新的文献求助10
3秒前
4秒前
5秒前
Leon完成签到,获得积分10
5秒前
221完成签到,获得积分10
5秒前
华仔完成签到,获得积分10
5秒前
iNk应助酷酷的山雁采纳,获得10
8秒前
陈慧钦发布了新的文献求助10
8秒前
8秒前
tiatia应助5999采纳,获得10
8秒前
10秒前
香蕉觅云应助Lee采纳,获得10
11秒前
充电宝应助研友_8Kedgn采纳,获得10
12秒前
研研发布了新的文献求助10
12秒前
汉堡包应助blueskyzhi采纳,获得10
12秒前
皮蛋完成签到,获得积分10
14秒前
14秒前
鱼贝贝完成签到 ,获得积分10
16秒前
懒洋洋完成签到 ,获得积分10
18秒前
yaxuandeng完成签到,获得积分10
19秒前
19秒前
浮游应助wocao采纳,获得10
20秒前
Lee发布了新的文献求助10
22秒前
23秒前
deeperection发布了新的文献求助10
25秒前
27秒前
丘比特应助ahfjk采纳,获得10
28秒前
youxiu完成签到 ,获得积分10
28秒前
29秒前
dolabmu完成签到 ,获得积分10
30秒前
30秒前
31秒前
jiaxiangxia完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429