亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG emotion recognition based on Ordinary Differential Equation Graph Convolutional Networks and Dynamic Time Wrapping

邻接矩阵 计算机科学 颂歌 模式识别(心理学) 平滑的 欧几里德距离 图形 人工智能 脑电图 邻接表 算法 数学 理论计算机科学 计算机视觉 应用数学 心理学 精神科
作者
Yiyuan Chen,Xiaodong Xu,Xiaoyi Bian,Xiaowei Qin
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111181-111181 被引量:7
标识
DOI:10.1016/j.asoc.2023.111181
摘要

Graph Convolutional Network (GCN) has been extensively utilized to extract relations among electroencephalography (EEG) electrode channels for its strong ability to handle non-Euclidean data. However, GCN still has some issues when it comes to extracting features from EEG signals: (1) GCN with more layers may experience over-smoothing, restricting its ability to mine longer dependency relations. (2) At the moment, most GCNs used to process EEG signals construct adjacency matrices by Euclidean distance, only considering the correlations on the feature domain while ignoring changes of signals over the entire time window. To address the issues above, we introduce an Ordinary Differential Equation (ODE) based GCN, which can perfectly eliminate the over-smoothing problem of the traditional GCN. Besides, we also propose a method based on Dynamic Time Wrapping (DTW) algorithm to construct an adjacency matrix in the time domain. To handle adjacency matrices calculated by Euclidean distance and DTW distance respectively, we apply a temporal–spatial model composed of two parallel modules each containing an ODE-based GCN and Long short-term memory neural networks (LSTM) network in turn. We conducted experiments on three public datasets. The results show that our methods have achieved an improvement of 2.19%/2.77%/2.13%/2.01% on Arousal/Valence/Dominance/Liking on DEAP dataset, 1.43% on SEED dataset and 3.06%/3.27% on Arousal/Valence on DREAMER dataset compared with state-of-the-art (SOTA) baseline methods. It demonstrates that our method can effectively approve the performance to handle the relations between EEG channels. The premise of the ODE-based GCN is that signal changes of all EEG channels should be continuous rather than abrupt. We believe that it conforms to the EEG mode, as it is activated by the same emotion stimulation while being collected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
衣裳薄完成签到,获得积分10
6秒前
吃了吃了完成签到,获得积分10
29秒前
32秒前
Hello应助yifei采纳,获得10
33秒前
谷雨完成签到 ,获得积分20
33秒前
谷雨关注了科研通微信公众号
36秒前
丁浩伦应助科研通管家采纳,获得10
39秒前
weske完成签到 ,获得积分10
41秒前
无花果应助干净南风采纳,获得10
47秒前
momomomo完成签到,获得积分10
56秒前
1分钟前
搜集达人应助牟青采纳,获得10
1分钟前
yifei发布了新的文献求助10
1分钟前
朱宣诚发布了新的文献求助10
1分钟前
1分钟前
鱼块完成签到 ,获得积分10
1分钟前
Lucas应助yifei采纳,获得10
1分钟前
andrele发布了新的文献求助10
1分钟前
科研通AI6应助杏仁核采纳,获得10
1分钟前
朱宣诚完成签到,获得积分10
1分钟前
1分钟前
么么么发布了新的文献求助10
1分钟前
Ava应助12彡采纳,获得10
1分钟前
1分钟前
么么么完成签到 ,获得积分10
1分钟前
12彡发布了新的文献求助10
1分钟前
眭超阳完成签到 ,获得积分10
1分钟前
思源应助粥粥采纳,获得80
2分钟前
orixero应助粥粥采纳,获得10
2分钟前
爆米花应助粥粥采纳,获得10
2分钟前
共享精神应助粥粥采纳,获得10
2分钟前
852应助粥粥采纳,获得10
2分钟前
无花果应助粥粥采纳,获得10
2分钟前
bkagyin应助粥粥采纳,获得10
2分钟前
星辰大海应助粥粥采纳,获得10
2分钟前
斯文败类应助粥粥采纳,获得10
2分钟前
万能图书馆应助粥粥采纳,获得10
2分钟前
在水一方应助粥粥采纳,获得10
2分钟前
小蘑菇应助粥粥采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581720
求助须知:如何正确求助?哪些是违规求助? 3999594
关于积分的说明 12381455
捐赠科研通 3674322
什么是DOI,文献DOI怎么找? 2024907
邀请新用户注册赠送积分活动 1058770
科研通“疑难数据库(出版商)”最低求助积分说明 945556