EEG emotion recognition based on Ordinary Differential Equation Graph Convolutional Networks and Dynamic Time Wrapping

邻接矩阵 计算机科学 颂歌 模式识别(心理学) 平滑的 欧几里德距离 图形 人工智能 脑电图 邻接表 算法 数学 理论计算机科学 计算机视觉 应用数学 精神科 心理学
作者
Yiyuan Chen,Xiaodong Xu,Xiaoyi Bian,Xiaowei Qin
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111181-111181 被引量:7
标识
DOI:10.1016/j.asoc.2023.111181
摘要

Graph Convolutional Network (GCN) has been extensively utilized to extract relations among electroencephalography (EEG) electrode channels for its strong ability to handle non-Euclidean data. However, GCN still has some issues when it comes to extracting features from EEG signals: (1) GCN with more layers may experience over-smoothing, restricting its ability to mine longer dependency relations. (2) At the moment, most GCNs used to process EEG signals construct adjacency matrices by Euclidean distance, only considering the correlations on the feature domain while ignoring changes of signals over the entire time window. To address the issues above, we introduce an Ordinary Differential Equation (ODE) based GCN, which can perfectly eliminate the over-smoothing problem of the traditional GCN. Besides, we also propose a method based on Dynamic Time Wrapping (DTW) algorithm to construct an adjacency matrix in the time domain. To handle adjacency matrices calculated by Euclidean distance and DTW distance respectively, we apply a temporal–spatial model composed of two parallel modules each containing an ODE-based GCN and Long short-term memory neural networks (LSTM) network in turn. We conducted experiments on three public datasets. The results show that our methods have achieved an improvement of 2.19%/2.77%/2.13%/2.01% on Arousal/Valence/Dominance/Liking on DEAP dataset, 1.43% on SEED dataset and 3.06%/3.27% on Arousal/Valence on DREAMER dataset compared with state-of-the-art (SOTA) baseline methods. It demonstrates that our method can effectively approve the performance to handle the relations between EEG channels. The premise of the ODE-based GCN is that signal changes of all EEG channels should be continuous rather than abrupt. We believe that it conforms to the EEG mode, as it is activated by the same emotion stimulation while being collected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fd163c应助大卷采纳,获得20
2秒前
炙热的萤发布了新的文献求助10
2秒前
3秒前
静夜谧思完成签到,获得积分10
4秒前
Lucas应助yakami采纳,获得10
5秒前
kk完成签到,获得积分10
5秒前
5秒前
LF-Scie完成签到,获得积分10
7秒前
学术z完成签到,获得积分10
7秒前
刻苦大米完成签到,获得积分10
7秒前
LZQ应助小可爱采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
8秒前
9秒前
Martin应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
哎呦喂完成签到,获得积分10
10秒前
CEJ发布了新的文献求助10
11秒前
SYLH应助小狸采纳,获得10
12秒前
小二郎应助mia采纳,获得10
14秒前
斯文败类应助Franky采纳,获得10
15秒前
丘比特应助von采纳,获得10
15秒前
丘比特应助炙热的萤采纳,获得10
16秒前
刻苦大米发布了新的文献求助10
16秒前
李健的粉丝团团长应助zxy采纳,获得10
17秒前
Ava应助hgh采纳,获得10
19秒前
CEJ完成签到,获得积分10
19秒前
在望应助April采纳,获得10
20秒前
21秒前
21秒前
香蕉觅云应助潘宋采纳,获得10
21秒前
赘婿应助余樂采纳,获得10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736001
求助须知:如何正确求助?哪些是违规求助? 3279686
关于积分的说明 10017009
捐赠科研通 2996428
什么是DOI,文献DOI怎么找? 1644048
邀请新用户注册赠送积分活动 781753
科研通“疑难数据库(出版商)”最低求助积分说明 749425