EEG emotion recognition based on Ordinary Differential Equation Graph Convolutional Networks and Dynamic Time Wrapping

邻接矩阵 计算机科学 颂歌 模式识别(心理学) 平滑的 欧几里德距离 图形 人工智能 脑电图 邻接表 算法 数学 理论计算机科学 计算机视觉 应用数学 心理学 精神科
作者
Yiyuan Chen,Xiaodong Xu,Xiaoyi Bian,Xiaowei Qin
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111181-111181 被引量:7
标识
DOI:10.1016/j.asoc.2023.111181
摘要

Graph Convolutional Network (GCN) has been extensively utilized to extract relations among electroencephalography (EEG) electrode channels for its strong ability to handle non-Euclidean data. However, GCN still has some issues when it comes to extracting features from EEG signals: (1) GCN with more layers may experience over-smoothing, restricting its ability to mine longer dependency relations. (2) At the moment, most GCNs used to process EEG signals construct adjacency matrices by Euclidean distance, only considering the correlations on the feature domain while ignoring changes of signals over the entire time window. To address the issues above, we introduce an Ordinary Differential Equation (ODE) based GCN, which can perfectly eliminate the over-smoothing problem of the traditional GCN. Besides, we also propose a method based on Dynamic Time Wrapping (DTW) algorithm to construct an adjacency matrix in the time domain. To handle adjacency matrices calculated by Euclidean distance and DTW distance respectively, we apply a temporal–spatial model composed of two parallel modules each containing an ODE-based GCN and Long short-term memory neural networks (LSTM) network in turn. We conducted experiments on three public datasets. The results show that our methods have achieved an improvement of 2.19%/2.77%/2.13%/2.01% on Arousal/Valence/Dominance/Liking on DEAP dataset, 1.43% on SEED dataset and 3.06%/3.27% on Arousal/Valence on DREAMER dataset compared with state-of-the-art (SOTA) baseline methods. It demonstrates that our method can effectively approve the performance to handle the relations between EEG channels. The premise of the ODE-based GCN is that signal changes of all EEG channels should be continuous rather than abrupt. We believe that it conforms to the EEG mode, as it is activated by the same emotion stimulation while being collected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fyjfyjfyj发布了新的文献求助10
刚刚
桐桐应助ZG采纳,获得10
1秒前
decade关注了科研通微信公众号
1秒前
李明星完成签到,获得积分10
1秒前
声声慢发布了新的文献求助10
1秒前
1秒前
Yue发布了新的文献求助10
2秒前
浮游应助认真小刺猬采纳,获得10
2秒前
2秒前
3秒前
今后应助十二采纳,获得10
3秒前
3秒前
wanci应助清爽冰夏采纳,获得10
3秒前
3秒前
4秒前
CipherSage应助hardtime采纳,获得10
4秒前
今后应助灰灰12138采纳,获得10
4秒前
分析发布了新的文献求助20
5秒前
二号发布了新的文献求助10
6秒前
锦城纯契完成签到 ,获得积分10
6秒前
王昕钥完成签到,获得积分10
6秒前
qingli完成签到,获得积分10
6秒前
科研通AI6应助桃子采纳,获得10
7秒前
李健的小迷弟应助11采纳,获得10
8秒前
Zxc发布了新的文献求助10
8秒前
科研cc发布了新的文献求助10
8秒前
orixero应助赵琪采纳,获得10
8秒前
lyy66964193完成签到,获得积分10
8秒前
9秒前
dyy发布了新的文献求助10
9秒前
10秒前
子车茗应助fs采纳,获得30
10秒前
方小上发布了新的文献求助10
10秒前
10秒前
柒七完成签到,获得积分10
10秒前
bkagyin应助二号采纳,获得10
10秒前
weimu发布了新的文献求助10
11秒前
11秒前
嗯qq完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111605
求助须知:如何正确求助?哪些是违规求助? 4319748
关于积分的说明 13459552
捐赠科研通 4150543
什么是DOI,文献DOI怎么找? 2274267
邀请新用户注册赠送积分活动 1276216
关于科研通互助平台的介绍 1214407