已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EEG emotion recognition based on Ordinary Differential Equation Graph Convolutional Networks and Dynamic Time Wrapping

邻接矩阵 计算机科学 颂歌 模式识别(心理学) 平滑的 欧几里德距离 图形 人工智能 脑电图 邻接表 算法 数学 理论计算机科学 计算机视觉 应用数学 心理学 精神科
作者
Yiyuan Chen,Xiaodong Xu,Xiaoyi Bian,Xiaowei Qin
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:152: 111181-111181 被引量:7
标识
DOI:10.1016/j.asoc.2023.111181
摘要

Graph Convolutional Network (GCN) has been extensively utilized to extract relations among electroencephalography (EEG) electrode channels for its strong ability to handle non-Euclidean data. However, GCN still has some issues when it comes to extracting features from EEG signals: (1) GCN with more layers may experience over-smoothing, restricting its ability to mine longer dependency relations. (2) At the moment, most GCNs used to process EEG signals construct adjacency matrices by Euclidean distance, only considering the correlations on the feature domain while ignoring changes of signals over the entire time window. To address the issues above, we introduce an Ordinary Differential Equation (ODE) based GCN, which can perfectly eliminate the over-smoothing problem of the traditional GCN. Besides, we also propose a method based on Dynamic Time Wrapping (DTW) algorithm to construct an adjacency matrix in the time domain. To handle adjacency matrices calculated by Euclidean distance and DTW distance respectively, we apply a temporal–spatial model composed of two parallel modules each containing an ODE-based GCN and Long short-term memory neural networks (LSTM) network in turn. We conducted experiments on three public datasets. The results show that our methods have achieved an improvement of 2.19%/2.77%/2.13%/2.01% on Arousal/Valence/Dominance/Liking on DEAP dataset, 1.43% on SEED dataset and 3.06%/3.27% on Arousal/Valence on DREAMER dataset compared with state-of-the-art (SOTA) baseline methods. It demonstrates that our method can effectively approve the performance to handle the relations between EEG channels. The premise of the ODE-based GCN is that signal changes of all EEG channels should be continuous rather than abrupt. We believe that it conforms to the EEG mode, as it is activated by the same emotion stimulation while being collected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
破晓完成签到,获得积分10
刚刚
1秒前
Nymeria发布了新的文献求助30
1秒前
怕孤独的聪展完成签到,获得积分10
2秒前
9464完成签到 ,获得积分10
2秒前
MrTStar完成签到 ,获得积分10
2秒前
dodo应助老鼠咕噜采纳,获得200
2秒前
3秒前
小马甲应助qwq采纳,获得10
4秒前
华仔应助小牙签哈哈哈采纳,获得10
4秒前
拼搏忆文发布了新的文献求助30
4秒前
小聪向前冲完成签到,获得积分10
5秒前
Mira完成签到,获得积分10
6秒前
浮游应助hunter采纳,获得10
6秒前
7秒前
小杭76应助缥缈千兰采纳,获得10
7秒前
畅快的虔纹完成签到,获得积分10
8秒前
8秒前
自觉凌蝶完成签到 ,获得积分10
8秒前
8秒前
9秒前
西瓜撞地球完成签到 ,获得积分10
11秒前
GS完成签到 ,获得积分10
11秒前
11秒前
anna完成签到,获得积分10
12秒前
13秒前
丁老三完成签到 ,获得积分10
14秒前
CD完成签到 ,获得积分10
15秒前
godgyw完成签到 ,获得积分10
16秒前
赘婿应助cc采纳,获得10
16秒前
柴胡完成签到,获得积分10
16秒前
桉豆完成签到 ,获得积分10
17秒前
8R60d8应助ywhys采纳,获得10
21秒前
无情的若山完成签到,获得积分10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312379
求助须知:如何正确求助?哪些是违规求助? 4456101
关于积分的说明 13865341
捐赠科研通 4344497
什么是DOI,文献DOI怎么找? 2385924
邀请新用户注册赠送积分活动 1380277
关于科研通互助平台的介绍 1348681