EEG emotion recognition based on Ordinary Differential Equation Graph Convolutional Networks and Dynamic Time Wrapping

邻接矩阵 计算机科学 颂歌 模式识别(心理学) 平滑的 欧几里德距离 图形 人工智能 脑电图 邻接表 算法 数学 理论计算机科学 计算机视觉 应用数学 精神科 心理学
作者
Yiyuan Chen,Xiaodong Xu,Xiaoyi Bian,Xiaowei Qin
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111181-111181 被引量:7
标识
DOI:10.1016/j.asoc.2023.111181
摘要

Graph Convolutional Network (GCN) has been extensively utilized to extract relations among electroencephalography (EEG) electrode channels for its strong ability to handle non-Euclidean data. However, GCN still has some issues when it comes to extracting features from EEG signals: (1) GCN with more layers may experience over-smoothing, restricting its ability to mine longer dependency relations. (2) At the moment, most GCNs used to process EEG signals construct adjacency matrices by Euclidean distance, only considering the correlations on the feature domain while ignoring changes of signals over the entire time window. To address the issues above, we introduce an Ordinary Differential Equation (ODE) based GCN, which can perfectly eliminate the over-smoothing problem of the traditional GCN. Besides, we also propose a method based on Dynamic Time Wrapping (DTW) algorithm to construct an adjacency matrix in the time domain. To handle adjacency matrices calculated by Euclidean distance and DTW distance respectively, we apply a temporal–spatial model composed of two parallel modules each containing an ODE-based GCN and Long short-term memory neural networks (LSTM) network in turn. We conducted experiments on three public datasets. The results show that our methods have achieved an improvement of 2.19%/2.77%/2.13%/2.01% on Arousal/Valence/Dominance/Liking on DEAP dataset, 1.43% on SEED dataset and 3.06%/3.27% on Arousal/Valence on DREAMER dataset compared with state-of-the-art (SOTA) baseline methods. It demonstrates that our method can effectively approve the performance to handle the relations between EEG channels. The premise of the ODE-based GCN is that signal changes of all EEG channels should be continuous rather than abrupt. We believe that it conforms to the EEG mode, as it is activated by the same emotion stimulation while being collected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小城故事完成签到,获得积分10
刚刚
xiaopihaier完成签到,获得积分10
刚刚
沙珠完成签到,获得积分10
1秒前
平常的青荷完成签到,获得积分10
1秒前
Jnest发布了新的文献求助10
1秒前
Dr_Shi完成签到,获得积分10
1秒前
秀丽的初柔完成签到,获得积分10
2秒前
DJ完成签到,获得积分10
2秒前
传奇3应助酷酷的起眸采纳,获得10
2秒前
拉普兰Z完成签到,获得积分10
3秒前
3秒前
CDQ完成签到,获得积分10
4秒前
Avicii完成签到 ,获得积分0
4秒前
RJL完成签到,获得积分10
4秒前
Orochimaru发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
高高远山完成签到,获得积分10
6秒前
cc完成签到,获得积分20
6秒前
相忘于江湖完成签到,获得积分10
8秒前
LHL完成签到,获得积分10
8秒前
ccc发布了新的文献求助10
8秒前
8秒前
runner完成签到,获得积分10
8秒前
9秒前
Du完成签到 ,获得积分10
9秒前
科研小白完成签到 ,获得积分10
10秒前
10秒前
Jnest完成签到,获得积分10
11秒前
Ivy完成签到,获得积分10
11秒前
科研虎完成签到,获得积分10
11秒前
Discord完成签到 ,获得积分10
12秒前
Orochimaru完成签到,获得积分10
12秒前
Pampers完成签到,获得积分10
13秒前
小白杨完成签到,获得积分10
13秒前
期刊完成签到,获得积分0
14秒前
14秒前
14秒前
二毛完成签到,获得积分0
15秒前
活力的流沙完成签到,获得积分10
16秒前
平淡远山完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259