PolyRoad: Polyline Transformer for Topological Road-Boundary Detection

边界(拓扑) 地质学 拓扑(电路) 遥感 计算机科学 数学 数学分析 组合数学
作者
Yuan Hu,Zhibin Wang,Zhou Huang,Yu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:3
标识
DOI:10.1109/tgrs.2023.3344103
摘要

Topological road-boundary detection using remote sensing imagery plays a critical role in creating high-definition (HD) maps and enabling autonomous driving. Previous approaches follow an iterative graph-growing paradigm for road-boundary extraction, where road boundaries are predicted vertex by vertex and instance by instance to output a graph, resulting in limitations of low inference speed. In this work, we formulate the road boundaries as polylines instead of a graph and propose a novel polyline transformer for topological road-boundary detection, termed PolyRoad. PolyRoad is built on the transformer architecture and is capable of detecting all road boundaries in parallel, which greatly improves the training and inference speed compared with the graph-based methods. To perform bipartite matching between the ground truth and predicted polylines, we develop a polyline matching cost to measure the distance, considering the order of open and closed polylines. In addition, we propose three different losses for supervising polyline learning: the order-oriented $L1$ loss, direction loss, and mask loss. The order-oriented $L1$ loss provides the point-level supervision to constrain the absolute position of each point of the road-boundary polylines. The direction loss provides the direction-level supervision to constrain the geometry shape of the predicted polylines by supervising the relative position of adjacent points. The mask loss provides the pixel-level supervision of the predicted polylines by converting the vector-format polylines into raster-format binary masks. Comprehensive experiments are conducted on the Topo-boundary dataset. Quantitative and qualitative results show that PolyRoad achieves superior performance than prior methods in both pixel-level and geometry-level metrics. More notably, PolyRoad achieves $3.37 \times $ and $22.85 \times $ faster inference speeds than Enhanced-iCurb and VecRoad, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hebiniannian完成签到 ,获得积分10
2秒前
久久完成签到 ,获得积分10
6秒前
roundtree完成签到 ,获得积分10
8秒前
chen完成签到 ,获得积分10
11秒前
文献搬运工完成签到 ,获得积分0
15秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
渠安完成签到 ,获得积分10
19秒前
小马甲应助没有几十亿采纳,获得10
19秒前
20秒前
上进完成签到 ,获得积分10
20秒前
Guochunbao发布了新的文献求助10
21秒前
22秒前
勤恳缘分发布了新的文献求助10
26秒前
28秒前
jw完成签到,获得积分10
33秒前
35秒前
量子星尘发布了新的文献求助10
35秒前
清爽的晓啸完成签到 ,获得积分10
38秒前
大气的画板完成签到 ,获得积分10
40秒前
logolush完成签到 ,获得积分10
40秒前
wonder发布了新的文献求助10
41秒前
消摇完成签到,获得积分10
46秒前
泥泞完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
48秒前
wanci应助勤恳缘分采纳,获得10
49秒前
小美美完成签到 ,获得积分10
49秒前
好好好完成签到 ,获得积分10
50秒前
Guochunbao完成签到,获得积分10
51秒前
果冻完成签到 ,获得积分10
55秒前
nano完成签到 ,获得积分10
56秒前
haochi完成签到,获得积分10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
听闻韬声依旧完成签到 ,获得积分10
1分钟前
会飞的小甘蔗完成签到 ,获得积分10
1分钟前
WangJL完成签到 ,获得积分10
1分钟前
Spice完成签到 ,获得积分10
1分钟前
小g完成签到,获得积分10
1分钟前
popo6150完成签到 ,获得积分10
1分钟前
ommphey完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470520
求助须知:如何正确求助?哪些是违规求助? 4573333
关于积分的说明 14338344
捐赠科研通 4500422
什么是DOI,文献DOI怎么找? 2465771
邀请新用户注册赠送积分活动 1454070
关于科研通互助平台的介绍 1428758