PolyRoad: Polyline Transformer for Topological Road-Boundary Detection

边界(拓扑) 地质学 拓扑(电路) 遥感 计算机科学 数学 数学分析 组合数学
作者
Yuan Hu,Zhibin Wang,Zhou Huang,Yu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:3
标识
DOI:10.1109/tgrs.2023.3344103
摘要

Topological road-boundary detection using remote sensing imagery plays a critical role in creating high-definition (HD) maps and enabling autonomous driving. Previous approaches follow an iterative graph-growing paradigm for road-boundary extraction, where road boundaries are predicted vertex by vertex and instance by instance to output a graph, resulting in limitations of low inference speed. In this work, we formulate the road boundaries as polylines instead of a graph and propose a novel polyline transformer for topological road-boundary detection, termed PolyRoad. PolyRoad is built on the transformer architecture and is capable of detecting all road boundaries in parallel, which greatly improves the training and inference speed compared with the graph-based methods. To perform bipartite matching between the ground truth and predicted polylines, we develop a polyline matching cost to measure the distance, considering the order of open and closed polylines. In addition, we propose three different losses for supervising polyline learning: the order-oriented $L1$ loss, direction loss, and mask loss. The order-oriented $L1$ loss provides the point-level supervision to constrain the absolute position of each point of the road-boundary polylines. The direction loss provides the direction-level supervision to constrain the geometry shape of the predicted polylines by supervising the relative position of adjacent points. The mask loss provides the pixel-level supervision of the predicted polylines by converting the vector-format polylines into raster-format binary masks. Comprehensive experiments are conducted on the Topo-boundary dataset. Quantitative and qualitative results show that PolyRoad achieves superior performance than prior methods in both pixel-level and geometry-level metrics. More notably, PolyRoad achieves $3.37 \times $ and $22.85 \times $ faster inference speeds than Enhanced-iCurb and VecRoad, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
与闲完成签到,获得积分10
刚刚
1秒前
qin完成签到 ,获得积分10
1秒前
逃之姚姚发布了新的文献求助10
1秒前
碧蓝怜梦完成签到 ,获得积分10
1秒前
热心树叶应助爱在西元前采纳,获得50
2秒前
月影碎星河完成签到,获得积分10
3秒前
3秒前
李健应助祁琪采纳,获得10
4秒前
rainbow5432完成签到 ,获得积分10
5秒前
5秒前
yulong发布了新的文献求助10
5秒前
5秒前
吱吱吱吱完成签到 ,获得积分10
6秒前
kkk驳回了wanci应助
6秒前
6秒前
xgx984完成签到,获得积分10
6秒前
乔滴滴完成签到 ,获得积分10
7秒前
Lin应助阳光襄采纳,获得10
8秒前
斯文败类应助刘畅采纳,获得10
8秒前
学术小白完成签到,获得积分20
8秒前
9秒前
9秒前
10秒前
11秒前
11秒前
风中凌旋应助爱在西元前采纳,获得10
11秒前
yulong完成签到,获得积分10
12秒前
小李发布了新的文献求助10
12秒前
12秒前
easy发布了新的文献求助10
12秒前
13秒前
咸蛋黄味曲奇完成签到,获得积分10
14秒前
NexusExplorer应助啾啾采纳,获得10
14秒前
廖怡星完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
16秒前
sleep应助科研通管家采纳,获得20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578485
求助须知:如何正确求助?哪些是违规求助? 4663329
关于积分的说明 14746065
捐赠科研通 4604137
什么是DOI,文献DOI怎么找? 2526852
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465760