PolyRoad: Polyline Transformer for Topological Road-Boundary Detection

边界(拓扑) 地质学 拓扑(电路) 遥感 计算机科学 数学 数学分析 组合数学
作者
Yuan Hu,Zhibin Wang,Zhou Huang,Yu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:3
标识
DOI:10.1109/tgrs.2023.3344103
摘要

Topological road-boundary detection using remote sensing imagery plays a critical role in creating high-definition (HD) maps and enabling autonomous driving. Previous approaches follow an iterative graph-growing paradigm for road-boundary extraction, where road boundaries are predicted vertex by vertex and instance by instance to output a graph, resulting in limitations of low inference speed. In this work, we formulate the road boundaries as polylines instead of a graph and propose a novel polyline transformer for topological road-boundary detection, termed PolyRoad. PolyRoad is built on the transformer architecture and is capable of detecting all road boundaries in parallel, which greatly improves the training and inference speed compared with the graph-based methods. To perform bipartite matching between the ground truth and predicted polylines, we develop a polyline matching cost to measure the distance, considering the order of open and closed polylines. In addition, we propose three different losses for supervising polyline learning: the order-oriented $L1$ loss, direction loss, and mask loss. The order-oriented $L1$ loss provides the point-level supervision to constrain the absolute position of each point of the road-boundary polylines. The direction loss provides the direction-level supervision to constrain the geometry shape of the predicted polylines by supervising the relative position of adjacent points. The mask loss provides the pixel-level supervision of the predicted polylines by converting the vector-format polylines into raster-format binary masks. Comprehensive experiments are conducted on the Topo-boundary dataset. Quantitative and qualitative results show that PolyRoad achieves superior performance than prior methods in both pixel-level and geometry-level metrics. More notably, PolyRoad achieves $3.37 \times $ and $22.85 \times $ faster inference speeds than Enhanced-iCurb and VecRoad, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eno完成签到,获得积分10
刚刚
3秒前
小巧的中蓝完成签到 ,获得积分10
5秒前
5秒前
5秒前
笨蛋美女完成签到 ,获得积分10
6秒前
6秒前
KK发布了新的文献求助80
6秒前
7秒前
7秒前
LTY完成签到,获得积分10
8秒前
9秒前
清漪发布了新的文献求助20
9秒前
sxy完成签到,获得积分10
10秒前
kkkk发布了新的文献求助10
10秒前
11秒前
王斌东南大学完成签到,获得积分10
13秒前
14秒前
木由发布了新的文献求助10
14秒前
格林菌完成签到,获得积分20
14秒前
科研通AI6应助LeiDY采纳,获得10
16秒前
17秒前
19秒前
小马甲应助清脆安南采纳,获得10
19秒前
李十一应助科研通管家采纳,获得10
20秒前
李十一应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
浮游应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得30
21秒前
烟花应助科研通管家采纳,获得10
21秒前
Orange应助chuhegou采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
李健应助xhn采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
21秒前
浮游应助科研通管家采纳,获得10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208415
求助须知:如何正确求助?哪些是违规求助? 4385955
关于积分的说明 13659345
捐赠科研通 4244900
什么是DOI,文献DOI怎么找? 2328993
邀请新用户注册赠送积分活动 1326790
关于科研通互助平台的介绍 1279012