PolyRoad: Polyline Transformer for Topological Road-Boundary Detection

边界(拓扑) 地质学 拓扑(电路) 遥感 计算机科学 数学 数学分析 组合数学
作者
Yuan Hu,Zhibin Wang,Zhou Huang,Yu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:3
标识
DOI:10.1109/tgrs.2023.3344103
摘要

Topological road-boundary detection using remote sensing imagery plays a critical role in creating high-definition (HD) maps and enabling autonomous driving. Previous approaches follow an iterative graph-growing paradigm for road-boundary extraction, where road boundaries are predicted vertex by vertex and instance by instance to output a graph, resulting in limitations of low inference speed. In this work, we formulate the road boundaries as polylines instead of a graph and propose a novel polyline transformer for topological road-boundary detection, termed PolyRoad. PolyRoad is built on the transformer architecture and is capable of detecting all road boundaries in parallel, which greatly improves the training and inference speed compared with the graph-based methods. To perform bipartite matching between the ground truth and predicted polylines, we develop a polyline matching cost to measure the distance, considering the order of open and closed polylines. In addition, we propose three different losses for supervising polyline learning: the order-oriented $L1$ loss, direction loss, and mask loss. The order-oriented $L1$ loss provides the point-level supervision to constrain the absolute position of each point of the road-boundary polylines. The direction loss provides the direction-level supervision to constrain the geometry shape of the predicted polylines by supervising the relative position of adjacent points. The mask loss provides the pixel-level supervision of the predicted polylines by converting the vector-format polylines into raster-format binary masks. Comprehensive experiments are conducted on the Topo-boundary dataset. Quantitative and qualitative results show that PolyRoad achieves superior performance than prior methods in both pixel-level and geometry-level metrics. More notably, PolyRoad achieves $3.37 \times $ and $22.85 \times $ faster inference speeds than Enhanced-iCurb and VecRoad, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心战斗机完成签到,获得积分10
1秒前
fomo完成签到,获得积分10
1秒前
moss完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
sule完成签到,获得积分10
5秒前
时代炸蛋完成签到 ,获得积分10
6秒前
完美梦之完成签到,获得积分10
6秒前
开放飞阳完成签到,获得积分10
11秒前
打打应助小苏采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
正己化人应助科研通管家采纳,获得10
14秒前
BowieHuang应助科研通管家采纳,获得10
15秒前
正己化人应助科研通管家采纳,获得10
15秒前
正己化人应助科研通管家采纳,获得10
15秒前
Thi发布了新的文献求助10
21秒前
喵喵完成签到 ,获得积分10
24秒前
她的城完成签到,获得积分0
25秒前
Frank完成签到,获得积分0
28秒前
CLTTTt完成签到,获得积分10
29秒前
聂先生完成签到,获得积分10
29秒前
zz完成签到 ,获得积分10
29秒前
shouz完成签到,获得积分10
32秒前
rsdggsrser完成签到 ,获得积分10
34秒前
yoyo完成签到 ,获得积分10
34秒前
阔达的背包完成签到 ,获得积分10
42秒前
贪玩的小夏完成签到 ,获得积分10
43秒前
拾壹完成签到,获得积分10
43秒前
小熙完成签到 ,获得积分10
45秒前
nextconnie完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
47秒前
满意的念柏完成签到,获得积分10
55秒前
himsn完成签到 ,获得积分10
57秒前
江江jiang完成签到 ,获得积分10
1分钟前
《子非鱼》完成签到,获得积分10
1分钟前
wh完成签到,获得积分10
1分钟前
1分钟前
大东子完成签到,获得积分10
1分钟前
qiaoxi完成签到,获得积分10
1分钟前
朴素海亦发布了新的文献求助10
1分钟前
LiChard完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685708
关于积分的说明 14838825
捐赠科研通 4673854
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067