PolyRoad: Polyline Transformer for Topological Road-Boundary Detection

边界(拓扑) 地质学 拓扑(电路) 遥感 计算机科学 数学 数学分析 组合数学
作者
Yuan Hu,Zhibin Wang,Zhou Huang,Yu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:2
标识
DOI:10.1109/tgrs.2023.3344103
摘要

Topological road-boundary detection using remote sensing imagery plays a critical role in creating high-definition (HD) maps and enabling autonomous driving. Previous approaches follow an iterative graph-growing paradigm for road-boundary extraction, where road boundaries are predicted vertex by vertex and instance by instance to output a graph, resulting in limitations of low inference speed. In this work, we formulate the road boundaries as polylines instead of a graph and propose a novel polyline transformer for topological road-boundary detection, termed PolyRoad. PolyRoad is built on the transformer architecture and is capable of detecting all road boundaries in parallel, which greatly improves the training and inference speed compared with the graph-based methods. To perform bipartite matching between the ground truth and predicted polylines, we develop a polyline matching cost to measure the distance, considering the order of open and closed polylines. In addition, we propose three different losses for supervising polyline learning: the order-oriented $L1$ loss, direction loss, and mask loss. The order-oriented $L1$ loss provides the point-level supervision to constrain the absolute position of each point of the road-boundary polylines. The direction loss provides the direction-level supervision to constrain the geometry shape of the predicted polylines by supervising the relative position of adjacent points. The mask loss provides the pixel-level supervision of the predicted polylines by converting the vector-format polylines into raster-format binary masks. Comprehensive experiments are conducted on the Topo-boundary dataset. Quantitative and qualitative results show that PolyRoad achieves superior performance than prior methods in both pixel-level and geometry-level metrics. More notably, PolyRoad achieves $3.37 \times $ and $22.85 \times $ faster inference speeds than Enhanced-iCurb and VecRoad, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柏凡完成签到,获得积分10
刚刚
1秒前
想水SCI发布了新的文献求助10
2秒前
无花果应助simon采纳,获得10
2秒前
3秒前
nn发布了新的文献求助10
3秒前
小枫完成签到 ,获得积分10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
诗雨完成签到,获得积分10
5秒前
6秒前
哇咔咔完成签到,获得积分10
6秒前
jjj关闭了jjj文献求助
6秒前
6秒前
星宇完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
生动小海豚关注了科研通微信公众号
7秒前
WYL发布了新的文献求助10
7秒前
通达完成签到,获得积分10
7秒前
Rose发布了新的文献求助10
7秒前
Ellie完成签到,获得积分10
7秒前
闪闪凡霜完成签到,获得积分10
7秒前
nieanicole完成签到 ,获得积分10
8秒前
诗雨发布了新的文献求助10
8秒前
9秒前
cugwzr发布了新的文献求助10
11秒前
miaozhuolin发布了新的文献求助10
11秒前
Dawn完成签到 ,获得积分10
11秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587