已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PolyRoad: Polyline Transformer for Topological Road-Boundary Detection

边界(拓扑) 地质学 拓扑(电路) 遥感 计算机科学 数学 数学分析 组合数学
作者
Yuan Hu,Zhibin Wang,Zhou Huang,Yu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:3
标识
DOI:10.1109/tgrs.2023.3344103
摘要

Topological road-boundary detection using remote sensing imagery plays a critical role in creating high-definition (HD) maps and enabling autonomous driving. Previous approaches follow an iterative graph-growing paradigm for road-boundary extraction, where road boundaries are predicted vertex by vertex and instance by instance to output a graph, resulting in limitations of low inference speed. In this work, we formulate the road boundaries as polylines instead of a graph and propose a novel polyline transformer for topological road-boundary detection, termed PolyRoad. PolyRoad is built on the transformer architecture and is capable of detecting all road boundaries in parallel, which greatly improves the training and inference speed compared with the graph-based methods. To perform bipartite matching between the ground truth and predicted polylines, we develop a polyline matching cost to measure the distance, considering the order of open and closed polylines. In addition, we propose three different losses for supervising polyline learning: the order-oriented $L1$ loss, direction loss, and mask loss. The order-oriented $L1$ loss provides the point-level supervision to constrain the absolute position of each point of the road-boundary polylines. The direction loss provides the direction-level supervision to constrain the geometry shape of the predicted polylines by supervising the relative position of adjacent points. The mask loss provides the pixel-level supervision of the predicted polylines by converting the vector-format polylines into raster-format binary masks. Comprehensive experiments are conducted on the Topo-boundary dataset. Quantitative and qualitative results show that PolyRoad achieves superior performance than prior methods in both pixel-level and geometry-level metrics. More notably, PolyRoad achieves $3.37 \times $ and $22.85 \times $ faster inference speeds than Enhanced-iCurb and VecRoad, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助彪壮的慕山采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
丰富之槐完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
shhoing应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
8秒前
9秒前
10秒前
12秒前
无恙29发布了新的文献求助10
13秒前
14秒前
piao完成签到 ,获得积分10
15秒前
levana发布了新的文献求助10
15秒前
摆渡人发布了新的文献求助10
15秒前
16秒前
脑洞疼应助滚筒洗衣机采纳,获得10
18秒前
19秒前
wanci应助肖敏采纳,获得10
19秒前
虞美人发布了新的文献求助10
20秒前
生动的驳完成签到 ,获得积分10
20秒前
科目三应助摆渡人采纳,获得10
21秒前
周日不上发条完成签到 ,获得积分20
22秒前
25秒前
三色完成签到,获得积分10
25秒前
27秒前
JJ完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538224
求助须知:如何正确求助?哪些是违规求助? 4625430
关于积分的说明 14595889
捐赠科研通 4565994
什么是DOI,文献DOI怎么找? 2502869
邀请新用户注册赠送积分活动 1481206
关于科研通互助平台的介绍 1452435