渗透
微乳液
聚乙二醇
化学
透皮
化学工程
材料科学
有机化学
膜
肺表面活性物质
医学
生物化学
工程类
药理学
作者
Muhammad Yasir Siddique,Muhammad Faizan Nazar,Muhammad Atif Saleem,Sajjad Haider,Sajjad Hussain Sumrra,Muhammad Saeed Akhtar,Zahoor H. Farooqi
标识
DOI:10.1002/slct.202302841
摘要
Abstract Microemulsion‐based gels (μEGs) are smart colloidal carriers, superior to traditional topical formulations due to formulation simplicity, structural flexibility, high stability, and controlled delivery of topical drugs through biofilms. Here, we report a new μEG formulation for topical application of an anti‐inflammatory drug, celecoxib (CXB). For this, the μE system was formulated using olive oil (~10 %), Water (~15 %), Tween‐80 (~67.5 %) and Span‐80 (~7.5 %) to enhanced the loading of CXB (~2.0 wt.%), and then gelled to semisolid μEG by the addition of polyethylene glycol 6000 (PEG‐6000) (2.0 wt.%) to modulate CXB passage across the skin‐barriers. Optical microscopy showed the transition from water‐in‐oil (w/o) to oil‐in‐water (o/w) through bicontinuous networks. Dynamic light scattering and electron micrographs demonstrate very fine unimodal assembly of CXB‐μE nanodroplets (~65 nm), which didn't amalgamate to form spherical CXB‐μEG (~95 nm) after gelation. Moreover, FTIR analysis showed effective encapsulation of CXB into hydrophobic microenvironment with no observable chemical interaction between CXB and μE excipients, which was further verified by the peak‐to‐peak measurement of fluorescence. Further, ex‐vivo permeation of CXB‐μEG showed enhanced and persistent permeation (>99 %) within 10 hours at pH=5.5 into rabbit skin barrier. This demonstrates the sustained release of CXB in μEG and the enhancement in transdermal delivery over its conventional topical formulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI