已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data fusion of satellite imagery and downscaling for generating highly fine-scale precipitation

缩小尺度 卫星图像 遥感 降水 比例(比率) 卫星 环境科学 地质学 气候学 气象学 地图学 地理 工程类 航空航天工程
作者
Xiang Zhang,Yu Song,Won‐Ho Nam,Tailai Huang,Xihui Gu,Jiangyuan Zeng,Shuzhe Huang,Nengcheng Chen,Zhao Yan,Dev Niyogi
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:631: 130665-130665 被引量:9
标识
DOI:10.1016/j.jhydrol.2024.130665
摘要

Due to the frequent occurrence of extreme precipitation events on a global scale, accurate estimation of regional precipitation has emerged as a critical concern. Specifically, region-scale hydrological modeling demands precipitation data with high spatiotemporal resolution and precision. Existing research has primarily concentrated on the correction and spatial downscaling of precipitation products. However, a considerable challenge persists in concurrently generating precipitation data with three key characteristics: high precision, high spatiotemporal resolution, and high spatial coverage (termed '3H'). This entails the provision of daily precipitation data at no more than a 1 km resolution, encompassing a full spatial extent. To address this challenge and obtain 3H precipitation data for regional hydrology research, this study introduces a multi-source precipitation data fusion and downscaling approach known as the 'Generate high Resolution, Accurate, Seamless data using Point-Surface (GRASPS) fusion method. This method combines the strengths of several satellite and model data sources to produce a more precise precipitation dataset at a daily scale and 1 km resolution, covering the Wuhan Urban Agglomeration. These sources include the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) from the Global Precipitation Measurement (GPM) mission, Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks – Climate Data Record (PERSIANN-CDR). Validation against precipitation data from 36 ground gauges yielded a Pearson Correlation Coefficient of 0.77, with Root Mean Squared Error, Mean Absolute Error, and Bias reduced to 6.08 mm, 2.20 mm, and −0.13 mm, respectively. Compared to prior studies, this research not only improved the spatial resolution of the precipitation dataset to 1 km but also enhanced the accuracy of extreme precipitation, resulting in an accuracy increase from 76.92 % to 91.67 %. Additionally, the generated precipitation dataset exhibited excellent performance at both daily and monthly scales. In terms of different land-cover types, the proposed method displayed improved performance in urban areas. Furthermore, the data obtained was subjected to testing across different input variables, precipitation levels, and downscaling algorithms. In conclusion, this study successfully obtained 3H precipitation data to bridge the gap in high-quality and fine-scale precipitation data. The proposed method and the generated dataset hold substantial implications for regional hydrology research and its practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橘涂初九发布了新的文献求助10
2秒前
吴小样完成签到,获得积分10
2秒前
内向元容发布了新的文献求助10
2秒前
周周发布了新的文献求助10
2秒前
3秒前
东东发布了新的文献求助10
3秒前
连沛芹完成签到,获得积分10
5秒前
飞翔云端完成签到,获得积分10
6秒前
脆脆鲨鱼完成签到,获得积分10
8秒前
11秒前
方越应助东东采纳,获得10
11秒前
orixero应助义气的羽毛采纳,获得10
13秒前
脑洞疼应助aaa采纳,获得10
14秒前
李存发布了新的文献求助10
15秒前
pluto应助Yvette2024采纳,获得20
16秒前
橘涂初九完成签到,获得积分10
16秒前
村里的黑叔叔完成签到,获得积分10
17秒前
深情安青应助平淡的天奇采纳,获得10
18秒前
19秒前
tmrrrrrr完成签到 ,获得积分10
20秒前
20秒前
8R60d8应助斜杠小猪采纳,获得10
21秒前
longlongzhi完成签到 ,获得积分10
21秒前
赵娜完成签到,获得积分10
21秒前
CLAIR发布了新的文献求助10
26秒前
优美雨筠发布了新的文献求助10
28秒前
Lucas应助大胆的忆安采纳,获得10
29秒前
tyk完成签到,获得积分10
30秒前
32秒前
justinshi发布了新的文献求助10
35秒前
胡浩发布了新的文献求助10
36秒前
36秒前
37秒前
40秒前
41秒前
orixero应助re采纳,获得10
42秒前
44秒前
CLAIR完成签到,获得积分10
44秒前
闵卷完成签到,获得积分10
45秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330233
求助须知:如何正确求助?哪些是违规求助? 2959835
关于积分的说明 8597237
捐赠科研通 2638343
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669078
邀请新用户注册赠送积分活动 656624