A journey from univariate to multivariate functional time series: A comprehensive review

单变量 多元统计 计算机科学 非参数统计 降维 多元分析 参数统计 领域(数学) 代表(政治) 数据挖掘 数据科学 人工智能 计量经济学 机器学习 统计 数学 纯数学 政治 政治学 法学
作者
Hossein Haghbin,Mehdi Maadooliat
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:16 (1) 被引量:1
标识
DOI:10.1002/wics.1640
摘要

Abstract Functional time series (FTS) analysis has emerged as a potent framework for modeling and forecasting time‐dependent data with functional attributes. In this comprehensive review, we navigate through the intricate landscape of FTS methodologies, meticulously surveying the core principles of univariate FTS and delving into the nuances of multivariate FTS. The journey commences with an exploration of the foundational aspects of univariate FTS analysis. We delve into representation, estimation, and modeling, spotlighting the effectiveness of various parametric and nonparametric models at our disposal. The stage then transitions to multivariate FTS analysis, where we confront the intricacies posed by high‐dimensional data. We explore strategies for dimensionality reduction, forecasting, and the integration of diverse parametric and nonparametric models within the multivariate realm. We also highlight commonly used R packages for modeling and forecasting FTS and multivariate FTS. Acknowledging the dynamic evolution of the field, we dissect challenges and chart future directions, paving a course for refinement and innovation. Through a fusion of multivariate statistics, functional analysis, and time series forecasting, this review underscores the interdisciplinary essence of FTS analysis. It not only reveals past accomplishments, but also illuminates the potential of FTS in unraveling insights and facilitating well‐informed decisions across diverse domains. This article is categorized under: Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data Statistical and Graphical Methods of Data Analysis > Multivariate Analysis
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hyd1640发布了新的文献求助30
1秒前
搜集达人应助从容的初彤采纳,获得10
1秒前
1秒前
牙牙乐发布了新的文献求助10
1秒前
1秒前
情怀应助22335566采纳,获得10
1秒前
大模型应助Brave采纳,获得10
2秒前
jopaul发布了新的文献求助10
2秒前
体贴鹰发布了新的文献求助10
2秒前
、、、完成签到,获得积分10
3秒前
Arthur发布了新的文献求助30
3秒前
4秒前
4秒前
5秒前
6秒前
Tonson应助joylotus采纳,获得10
6秒前
隐形曼青应助modesty采纳,获得10
6秒前
7秒前
无尘泪发布了新的文献求助10
7秒前
7秒前
wzh发布了新的文献求助10
7秒前
热情爆米花完成签到 ,获得积分10
7秒前
Orange应助Russell采纳,获得10
7秒前
执着凝冬发布了新的文献求助10
8秒前
1o完成签到 ,获得积分10
8秒前
毕乾坤完成签到 ,获得积分10
8秒前
低空飞行发布了新的文献求助10
10秒前
10秒前
ASUNA发布了新的文献求助10
10秒前
科目三应助壮观人达采纳,获得10
10秒前
22335566完成签到,获得积分10
10秒前
受伤丹妗发布了新的文献求助10
10秒前
sususu发布了新的文献求助10
11秒前
Hello应助李昕123采纳,获得10
12秒前
12秒前
12秒前
科研通AI6应助不爱写论文采纳,获得10
13秒前
14秒前
xzm完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469155
求助须知:如何正确求助?哪些是违规求助? 4572311
关于积分的说明 14335054
捐赠科研通 4499131
什么是DOI,文献DOI怎么找? 2464938
邀请新用户注册赠送积分活动 1453493
关于科研通互助平台的介绍 1428006