An Optimization-Driven Network With Knowledge Prior Injection for HSI Denoising

计算机科学 可解释性 增采样 高斯噪声 人工智能 降噪 噪音(视频) 脉冲噪声 稳健性(进化) 卷积神经网络 噪声测量 模式识别(心理学) 计算机视觉 图像(数学) 生物化学 基因 像素 化学
作者
Yajie Li,Jie Li,Jiang He,Xinxin Liu,Qiangqiang Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:6
标识
DOI:10.1109/tgrs.2023.3329887
摘要

Due to the limitations of sensor hardware devices, the hyperspectral image (HSI) often suffers from various types of noise, such as Gaussian noise, impulse noise, stripe noise, and deadlines, which can significantly degrade their quality. Although many data-driven methods have been proposed to deal with complex noise, few of them consider the structural characteristics of noise. This not only leads to a lack of interpretability but also results in poor performance when dealing with structural noise in practical applications. To address this issue, this article proposes KPInet, a convolutional neural network (CNN) driven by the structural knowledge of noise for HSI denoising. First and foremost, the knowledge optimization-driven module (KODM) utilizes the deep unrolling method to unfold a total variation (TV) algorithm that considers the structural characteristics of noise. This approach improves the network’s interpretability and results in better performance on structural noise, while maintaining the effect of removing Gaussian noise. Second, the statistical feature injection module (SFIM) extracts more features by utilizing spectral gradients, medians, and means of the HSI. Third, the multiscale degradation guidance module (MDGM) utilizes a dual-stream decoder with a low-resolution upsampling guidance branch to better distinguish the real structure and noise structure in the HSI. Experimental results on simulated and real datasets indicate that the approach achieves favorable denoising performance, as evidenced by both quantitative evaluation metrics and visual results. Furthermore, it also demonstrates the robustness and generalization capacity of the proposed KPInet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助keyanyan采纳,获得10
刚刚
科研通AI5应助亲亲紫荆采纳,获得30
刚刚
司空豁应助宇小姐采纳,获得10
1秒前
1秒前
1秒前
庆幸发布了新的文献求助10
2秒前
YF_1987发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
赘婿应助愤怒的梦柏采纳,获得10
4秒前
领导范儿应助KD357采纳,获得10
4秒前
嘻嘻嘻发布了新的文献求助10
4秒前
4秒前
5秒前
文刀发布了新的文献求助10
5秒前
lll发布了新的文献求助20
5秒前
zhe完成签到 ,获得积分10
5秒前
陈惠卿88完成签到,获得积分10
6秒前
共享精神应助木木三采纳,获得10
6秒前
6秒前
考博上岸26完成签到 ,获得积分10
6秒前
华仔应助xunoverflow采纳,获得10
7秒前
8秒前
FeLaN发布了新的文献求助10
8秒前
bkagyin应助庆幸采纳,获得10
8秒前
李雩完成签到 ,获得积分10
8秒前
9秒前
angelalxj关注了科研通微信公众号
9秒前
9秒前
小栩发布了新的文献求助10
10秒前
blank发布了新的文献求助10
10秒前
和谐念寒发布了新的文献求助10
11秒前
11秒前
tiantian发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343