An Optimization-Driven Network With Knowledge Prior Injection for HSI Denoising

计算机科学 可解释性 增采样 高斯噪声 人工智能 降噪 噪音(视频) 脉冲噪声 稳健性(进化) 卷积神经网络 噪声测量 模式识别(心理学) 计算机视觉 图像(数学) 生物化学 基因 像素 化学
作者
Yajie Li,Jie Li,Jiang He,Xinxin Liu,Qiangqiang Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:6
标识
DOI:10.1109/tgrs.2023.3329887
摘要

Due to the limitations of sensor hardware devices, the hyperspectral image (HSI) often suffers from various types of noise, such as Gaussian noise, impulse noise, stripe noise, and deadlines, which can significantly degrade their quality. Although many data-driven methods have been proposed to deal with complex noise, few of them consider the structural characteristics of noise. This not only leads to a lack of interpretability but also results in poor performance when dealing with structural noise in practical applications. To address this issue, this article proposes KPInet, a convolutional neural network (CNN) driven by the structural knowledge of noise for HSI denoising. First and foremost, the knowledge optimization-driven module (KODM) utilizes the deep unrolling method to unfold a total variation (TV) algorithm that considers the structural characteristics of noise. This approach improves the network’s interpretability and results in better performance on structural noise, while maintaining the effect of removing Gaussian noise. Second, the statistical feature injection module (SFIM) extracts more features by utilizing spectral gradients, medians, and means of the HSI. Third, the multiscale degradation guidance module (MDGM) utilizes a dual-stream decoder with a low-resolution upsampling guidance branch to better distinguish the real structure and noise structure in the HSI. Experimental results on simulated and real datasets indicate that the approach achieves favorable denoising performance, as evidenced by both quantitative evaluation metrics and visual results. Furthermore, it also demonstrates the robustness and generalization capacity of the proposed KPInet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜小时完成签到,获得积分10
刚刚
1秒前
Accept完成签到,获得积分0
2秒前
3秒前
油个大饼呜呜呜完成签到,获得积分10
4秒前
王哥完成签到,获得积分10
5秒前
诚心代芙完成签到 ,获得积分10
5秒前
5秒前
cowboy007发布了新的文献求助10
6秒前
乐乐应助eternity136采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
明眸完成签到 ,获得积分10
8秒前
9秒前
王手发布了新的文献求助10
10秒前
10秒前
10秒前
烟花应助zzq778采纳,获得10
12秒前
12秒前
欣欣发布了新的文献求助10
12秒前
小欣6116发布了新的文献求助10
13秒前
Jiuhui发布了新的文献求助10
13秒前
御风甜咖啡完成签到,获得积分10
13秒前
uupp完成签到,获得积分10
14秒前
机智雁凡完成签到,获得积分10
15秒前
Cheung2121发布了新的文献求助30
16秒前
17秒前
19秒前
谜记完成签到,获得积分10
19秒前
共享精神应助Cheung2121采纳,获得30
19秒前
光撒盐完成签到,获得积分10
20秒前
cowboy007完成签到,获得积分10
20秒前
张振宇完成签到 ,获得积分10
21秒前
zz发布了新的文献求助10
22秒前
zzq778发布了新的文献求助10
24秒前
黄怡婷完成签到 ,获得积分10
24秒前
Daisy应助科研通管家采纳,获得10
25秒前
机智苗应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029