已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transferring Adult-like Phase Images for Robust Multi-view Isointense Infant Brain Segmentation

人工智能 图像分割 计算机视觉 计算机科学 相(物质) 神经影像学 分割 模式识别(心理学) 神经科学 物理 心理学 量子力学
作者
Huabing Liu,Jiawei Huang,Dengqiang Jia,Qian Wang,Jun Xu,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3430348
摘要

Accurate tissue segmentation of infant brain in magnetic resonance (MR) images is crucial for charting early brain development and identifying biomarkers. Due to ongoing myelination and maturation, in the isointense phase (6-9 months of age), the gray and white matters of infant brain exhibit similar intensity levels in MR images, posing significant challenges for tissue segmentation. Meanwhile, in the adult-like phase around 12 months of age, the MR images show high tissue contrast and can be easily segmented. In this paper, we propose to effectively exploit adult-like phase images to achieve robustmulti-view isointense infant brain segmentation. Specifically, in one way, we transfer adult-like phase images to the isointense view, which have similar tissue contrast as the isointense phase images, and use the transferred images to train an isointense-view segmentation network. On the other way, we transfer isointense phase images to the adult-like view, which have enhanced tissue contrast, for training a segmentation network in the adult-like view. The segmentation networks of different views form a multi-path architecture that performs multi-view learning to further boost the segmentation performance. Since anatomy-preserving style transfer is key to the downstream segmentation task, we develop a Disentangled Cycle-consistent Adversarial Network (DCAN) with strong regularization terms to accurately transfer realistic tissue contrast between isointense and adult-like phase images while still maintaining their structural consistency. Experiments on both NDAR and iSeg-2019 datasets demonstrate a significant superior performance of our method over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
今后应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
3秒前
zz发布了新的文献求助10
5秒前
端庄的飞阳完成签到 ,获得积分10
5秒前
Captain发布了新的文献求助10
8秒前
9秒前
11秒前
姜宇航完成签到 ,获得积分10
12秒前
13秒前
白斯特发布了新的文献求助10
15秒前
藏沙完成签到 ,获得积分10
16秒前
21秒前
24秒前
米米发布了新的文献求助10
26秒前
晚意意意意意完成签到 ,获得积分10
27秒前
34秒前
35秒前
36秒前
shinysparrow应助Hung采纳,获得200
37秒前
虚幻初之发布了新的文献求助10
37秒前
清逸完成签到 ,获得积分10
40秒前
張医铄完成签到,获得积分10
40秒前
Orange应助Vivian采纳,获得10
41秒前
turbohero发布了新的文献求助10
43秒前
潇洒绿蕊完成签到,获得积分10
45秒前
lulu完成签到 ,获得积分10
46秒前
maolao发布了新的文献求助10
47秒前
归海梦岚完成签到,获得积分0
48秒前
CodeCraft应助zzholiver采纳,获得10
48秒前
维尼完成签到,获得积分10
50秒前
清爽的傲易完成签到 ,获得积分10
54秒前
dong应助于某人采纳,获得10
56秒前
56秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959928
求助须知:如何正确求助?哪些是违规求助? 3506172
关于积分的说明 11128138
捐赠科研通 3238123
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024