A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n

算法 计算机科学 人工智能
作者
Wu Xie,Fei Feng,Huimin Zhang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (14): 4448-4448
标识
DOI:10.3390/s24144448
摘要

Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once–Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal–EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助雪白代珊采纳,获得30
1秒前
Serein完成签到,获得积分10
1秒前
坚定从波完成签到,获得积分10
2秒前
打打应助陈诺采纳,获得10
5秒前
wqq发布了新的文献求助10
6秒前
7秒前
牛牛牛发布了新的文献求助10
7秒前
xiaosu完成签到,获得积分10
7秒前
8秒前
清云完成签到,获得积分10
8秒前
LXZ发布了新的文献求助10
9秒前
Jasper应助something采纳,获得10
9秒前
10秒前
moxin完成签到,获得积分10
10秒前
dou完成签到,获得积分10
10秒前
Jeamren完成签到,获得积分10
13秒前
14秒前
莹0000发布了新的文献求助10
14秒前
百宝发布了新的文献求助10
15秒前
yitai发布了新的文献求助10
15秒前
16秒前
xiaosu发布了新的文献求助10
16秒前
19秒前
我是张铁柱·完成签到,获得积分10
19秒前
万卓仁发布了新的文献求助10
19秒前
20秒前
多多发布了新的文献求助10
21秒前
呼呼完成签到,获得积分10
21秒前
21秒前
琳琳完成签到,获得积分20
23秒前
23秒前
wqq关闭了wqq文献求助
24秒前
25秒前
25秒前
MXene应助科研通管家采纳,获得20
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182