A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n

算法 计算机科学 人工智能
作者
Wu Xie,Fei Feng,Huimin Zhang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (14): 4448-4448
标识
DOI:10.3390/s24144448
摘要

Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once–Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal–EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪子发布了新的文献求助10
刚刚
斯文败类应助汪澳采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
西瓜完成签到,获得积分10
1秒前
1秒前
江江好完成签到,获得积分10
1秒前
MCQ发布了新的文献求助10
2秒前
2秒前
盲点发布了新的文献求助10
2秒前
2秒前
AAAAa发布了新的文献求助10
3秒前
正直无极完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
好久不见应助无言采纳,获得10
4秒前
麦地娜发布了新的文献求助10
4秒前
文耳东完成签到,获得积分10
4秒前
5秒前
乐观小之发布了新的文献求助10
5秒前
江江好发布了新的文献求助10
5秒前
Owen应助gan采纳,获得10
5秒前
阿司匹林完成签到,获得积分10
5秒前
5秒前
FIREWORK发布了新的文献求助10
6秒前
Jasper应助wuqi采纳,获得10
6秒前
shu发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
MCQ完成签到,获得积分10
8秒前
浮游应助小太阳采纳,获得10
8秒前
Endless发布了新的文献求助10
8秒前
皮代谷完成签到,获得积分10
8秒前
充电宝应助芝士就是力量采纳,获得10
9秒前
9秒前
ethereal发布了新的文献求助10
9秒前
花粉过敏发布了新的文献求助10
9秒前
斯文123发布了新的文献求助10
9秒前
zmhstb发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049