A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n

算法 计算机科学 人工智能
作者
Wu Xie,Fei Feng,Huimin Zhang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (14): 4448-4448
标识
DOI:10.3390/s24144448
摘要

Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once–Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal–EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助YJ采纳,获得20
刚刚
1秒前
1秒前
24发布了新的文献求助10
1秒前
zhang发布了新的文献求助10
2秒前
黎缘发布了新的文献求助20
2秒前
英姑应助漂亮的麦片采纳,获得10
3秒前
顺利毕业完成签到,获得积分10
4秒前
夏以宁完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
EeeYiz完成签到 ,获得积分10
5秒前
5秒前
darrickkkkk发布了新的文献求助10
5秒前
氙氙发布了新的文献求助10
5秒前
李胜男完成签到,获得积分20
5秒前
Erin发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
共享精神应助小毛线采纳,获得10
6秒前
搜集达人应助zhang采纳,获得10
7秒前
活力的天空完成签到,获得积分10
8秒前
8秒前
9秒前
QIAO完成签到,获得积分10
9秒前
9秒前
9秒前
童童完成签到,获得积分10
9秒前
佼佼者发布了新的文献求助10
10秒前
王磊发布了新的文献求助10
10秒前
吴广发布了新的文献求助10
10秒前
11秒前
婷婷完成签到 ,获得积分10
11秒前
11发布了新的文献求助10
11秒前
前进四19发布了新的文献求助10
11秒前
12秒前
WangXuerong发布了新的文献求助10
12秒前
13秒前
Yidong完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070635
求助须知:如何正确求助?哪些是违规求助? 4291701
关于积分的说明 13371472
捐赠科研通 4111985
什么是DOI,文献DOI怎么找? 2251839
邀请新用户注册赠送积分活动 1256879
关于科研通互助平台的介绍 1189544