A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n

算法 计算机科学 人工智能
作者
Wu Xie,Fei Feng,Huimin Zhang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (14): 4448-4448
标识
DOI:10.3390/s24144448
摘要

Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once–Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal–EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张颖完成签到 ,获得积分10
7秒前
7秒前
wyh295352318完成签到 ,获得积分10
10秒前
简单发布了新的文献求助10
12秒前
xiaozheng发布了新的文献求助10
19秒前
水晶李完成签到 ,获得积分10
20秒前
优秀的源智完成签到 ,获得积分10
21秒前
科研狗完成签到 ,获得积分10
22秒前
Alanni完成签到 ,获得积分10
22秒前
leo完成签到,获得积分10
24秒前
kiwi完成签到 ,获得积分10
28秒前
onevip完成签到,获得积分10
47秒前
科研通AI2S应助Singularity采纳,获得10
58秒前
58秒前
漂亮的不言完成签到 ,获得积分10
1分钟前
suki完成签到 ,获得积分10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
DJ_Tokyo完成签到,获得积分10
1分钟前
yhbk完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
奋斗慕凝完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分10
1分钟前
高大沧海发布了新的文献求助10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
求助完成签到,获得积分10
1分钟前
liangguangyuan完成签到 ,获得积分10
1分钟前
帅气的熊猫完成签到 ,获得积分10
1分钟前
Vegeta完成签到 ,获得积分10
1分钟前
听闻韬声依旧完成签到 ,获得积分10
1分钟前
赧赧完成签到 ,获得积分10
1分钟前
淞淞于我完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
SciGPT应助司空致远采纳,获得10
2分钟前
乐乐完成签到,获得积分10
2分钟前
2分钟前
白日焰火完成签到 ,获得积分10
2分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339051
求助须知:如何正确求助?哪些是违规求助? 2967054
关于积分的说明 8627952
捐赠科研通 2646523
什么是DOI,文献DOI怎么找? 1449277
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660176