亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n

算法 计算机科学 人工智能
作者
Wu Xie,Fei Feng,Huimin Zhang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (14): 4448-4448
标识
DOI:10.3390/s24144448
摘要

Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once–Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal–EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
3秒前
4秒前
耳东发布了新的文献求助10
4秒前
10秒前
壳壳发布了新的文献求助10
10秒前
蛋子s发布了新的文献求助10
11秒前
一见喜发布了新的文献求助10
14秒前
耳东完成签到,获得积分10
14秒前
机智的芷天完成签到,获得积分10
16秒前
18秒前
小唐完成签到,获得积分10
21秒前
22秒前
28秒前
乐乐应助蛋子s采纳,获得10
31秒前
ww完成签到,获得积分10
33秒前
慕青应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
壳壳完成签到,获得积分10
37秒前
38秒前
冀东发布了新的文献求助10
38秒前
40秒前
41秒前
47秒前
世纪完成签到,获得积分10
52秒前
Dr发布了新的文献求助10
53秒前
一见憘完成签到 ,获得积分10
1分钟前
愤怒的小鸽子完成签到,获得积分10
1分钟前
烟花应助Dr采纳,获得10
1分钟前
啊啊啊完成签到 ,获得积分10
1分钟前
perfect完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
luluzhu发布了新的文献求助50
1分钟前
HJJHJH应助人帅气质佳采纳,获得30
1分钟前
慕青应助LY采纳,获得10
1分钟前
大个应助Thorns采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780042
求助须知:如何正确求助?哪些是违规求助? 5651669
关于积分的说明 15452704
捐赠科研通 4910900
什么是DOI,文献DOI怎么找? 2643098
邀请新用户注册赠送积分活动 1590707
关于科研通互助平台的介绍 1545183