The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee1992完成签到,获得积分10
刚刚
萂昕完成签到 ,获得积分10
刚刚
英姑应助斐波拉切土豆采纳,获得10
刚刚
风中莫英发布了新的文献求助10
1秒前
小依爱摸鱼完成签到,获得积分10
1秒前
在水一方应助洪悦冰采纳,获得30
1秒前
烤鸭卷饼完成签到,获得积分10
2秒前
BYN完成签到 ,获得积分10
2秒前
义气尔芙完成签到,获得积分10
2秒前
最好是完成签到,获得积分10
3秒前
Gaoge完成签到,获得积分10
4秒前
xinran_lv完成签到,获得积分10
4秒前
情怀应助abab小王采纳,获得10
4秒前
4秒前
5秒前
罂粟完成签到,获得积分10
5秒前
生而狂野天逸完成签到,获得积分10
6秒前
单身的淇完成签到 ,获得积分10
6秒前
Rsoup完成签到,获得积分10
6秒前
不善良完成签到 ,获得积分10
7秒前
lxl完成签到,获得积分10
8秒前
石榴脆莆完成签到,获得积分10
8秒前
hhpxxy完成签到,获得积分10
8秒前
橘子海完成签到 ,获得积分10
9秒前
范森林完成签到 ,获得积分10
9秒前
如你所liao完成签到,获得积分10
10秒前
阳炎完成签到,获得积分10
10秒前
曾经碧蓉完成签到,获得积分10
10秒前
办公的牛马完成签到,获得积分10
10秒前
Pengcheng完成签到,获得积分10
10秒前
笑嘻嘻完成签到,获得积分10
11秒前
11秒前
11秒前
瓜兵是官爷完成签到,获得积分10
12秒前
cc完成签到,获得积分10
13秒前
风中的问柳完成签到,获得积分10
13秒前
老迟到的可兰完成签到,获得积分10
13秒前
清脆圆子完成签到 ,获得积分10
13秒前
汐鹿完成签到,获得积分10
13秒前
冯宇完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484