The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Siri完成签到,获得积分10
1秒前
醉林发布了新的文献求助10
3秒前
脑洞疼应助liang2508采纳,获得10
4秒前
ahua15s完成签到,获得积分10
4秒前
5秒前
Jane2024完成签到,获得积分10
6秒前
xyq完成签到,获得积分10
7秒前
传统的夜南完成签到,获得积分10
7秒前
小马甲应助黄桃采纳,获得10
8秒前
慕青应助gugugaga采纳,获得10
8秒前
大个应助qqqwww采纳,获得10
8秒前
施一完成签到,获得积分10
8秒前
8秒前
9秒前
852应助xyq采纳,获得30
10秒前
和谐天川完成签到,获得积分10
10秒前
李佳笑发布了新的文献求助10
11秒前
Smar_zcl举报爱科研的咩咩求助涉嫌违规
11秒前
Sean完成签到,获得积分10
12秒前
彭于晏应助AN采纳,获得10
12秒前
12秒前
myc发布了新的文献求助10
13秒前
羊羊羊完成签到,获得积分10
13秒前
13秒前
xiaozhi415发布了新的文献求助10
15秒前
勤恳钢笔完成签到 ,获得积分10
15秒前
15秒前
fkalltn完成签到,获得积分10
15秒前
DrY发布了新的文献求助10
16秒前
16秒前
负责新筠发布了新的文献求助10
16秒前
16秒前
11发布了新的文献求助10
17秒前
18秒前
18秒前
wwww发布了新的文献求助10
19秒前
zwjhbz完成签到,获得积分10
19秒前
20秒前
Jasper应助Jackson_Cai采纳,获得10
21秒前
kuaizzero完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350697
求助须知:如何正确求助?哪些是违规求助? 4484017
关于积分的说明 13957727
捐赠科研通 4383424
什么是DOI,文献DOI怎么找? 2408351
邀请新用户注册赠送积分活动 1400964
关于科研通互助平台的介绍 1374387