The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吕丽琪发布了新的文献求助10
1秒前
1秒前
asss发布了新的文献求助10
2秒前
2秒前
3秒前
小橘发布了新的文献求助10
3秒前
111发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
Yuan_n完成签到 ,获得积分10
5秒前
5秒前
6秒前
大模型应助缘起缘灭采纳,获得10
7秒前
7秒前
8秒前
苻沛蓝发布了新的文献求助10
8秒前
泰想成功发布了新的文献求助10
9秒前
嘟嘟嘟发布了新的文献求助10
10秒前
123完成签到,获得积分20
10秒前
七七发布了新的文献求助30
10秒前
顾矜应助SPark采纳,获得10
11秒前
wangtongxue发布了新的文献求助10
12秒前
12秒前
nenoaowu应助风华正茂采纳,获得30
13秒前
可爱的函函应助小橘采纳,获得10
13秒前
chaoshen完成签到,获得积分10
14秒前
背后的惜珊完成签到,获得积分10
15秒前
15秒前
17秒前
共享精神应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
19秒前
嘟嘟嘟完成签到,获得积分20
19秒前
Orange应助琴香孙琴香采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
高速可见光通信关键技术 500
高速可见光通信芯片与应用系统 500
室外可见光通信与智能交通 500
可见光通信专用集成电路及实时系统 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4876459
求助须知:如何正确求助?哪些是违规求助? 4164899
关于积分的说明 12919619
捐赠科研通 3922435
什么是DOI,文献DOI怎么找? 2153328
邀请新用户注册赠送积分活动 1171461
关于科研通互助平台的介绍 1075214