The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyman1218完成签到 ,获得积分10
刚刚
Lee完成签到,获得积分10
刚刚
独特谷丝发布了新的文献求助20
1秒前
HAN发布了新的文献求助10
1秒前
羊羊羊发布了新的文献求助10
2秒前
3秒前
123完成签到,获得积分20
3秒前
梁三柏应助李清水采纳,获得10
5秒前
5秒前
Lucas应助huhu采纳,获得10
6秒前
无情愫完成签到,获得积分20
7秒前
alice完成签到,获得积分10
7秒前
一个人的表情完成签到,获得积分10
8秒前
科研通AI5应助malistm采纳,获得10
8秒前
yyyyyy完成签到 ,获得积分10
9秒前
JamesPei应助一心难求采纳,获得10
10秒前
斯文的小旋风应助xibei采纳,获得20
10秒前
11秒前
酷波er应助小苑采纳,获得10
11秒前
Orange应助aqiu采纳,获得10
11秒前
风中的三德完成签到,获得积分10
14秒前
SciGPT应助wenbin采纳,获得10
14秒前
李爱国应助欣喜宛亦采纳,获得10
15秒前
科研通AI5应助cch采纳,获得10
16秒前
学术屎壳郎完成签到,获得积分10
16秒前
Siqi发布了新的文献求助30
17秒前
内向翰完成签到,获得积分10
18秒前
18秒前
19秒前
dreamdraver完成签到,获得积分10
19秒前
19秒前
19秒前
One应助xh采纳,获得10
19秒前
羊羊羊完成签到,获得积分10
20秒前
20秒前
21秒前
Eileen完成签到,获得积分10
21秒前
所所应助HY采纳,获得10
21秒前
22秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769147
求助须知:如何正确求助?哪些是违规求助? 3314193
关于积分的说明 10171062
捐赠科研通 3029255
什么是DOI,文献DOI怎么找? 1662296
邀请新用户注册赠送积分活动 794827
科研通“疑难数据库(出版商)”最低求助积分说明 756421