已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcc发布了新的文献求助10
1秒前
Yun完成签到 ,获得积分10
1秒前
爱学习的YY完成签到 ,获得积分10
2秒前
5秒前
思源应助公西凝芙采纳,获得10
6秒前
自闭儿童发布了新的文献求助30
7秒前
完美世界应助敦敦采纳,获得10
7秒前
英姑应助啦啦啦采纳,获得10
9秒前
9秒前
lu完成签到 ,获得积分10
10秒前
chuanxue完成签到,获得积分10
12秒前
Yuang完成签到 ,获得积分10
14秒前
缥缈的涵菡完成签到 ,获得积分20
14秒前
15秒前
chuanxue发布了新的文献求助30
15秒前
冷酷飞飞完成签到 ,获得积分10
18秒前
Heyley完成签到,获得积分10
18秒前
19秒前
酷酷语兰完成签到,获得积分10
21秒前
浅呀呀呀发布了新的文献求助10
21秒前
自闭儿童完成签到,获得积分10
22秒前
心灵美的千易完成签到 ,获得积分10
23秒前
在水一方应助sunshine采纳,获得10
26秒前
灰灰发布了新的文献求助10
28秒前
kimchiyak留下了新的社区评论
29秒前
小白完成签到 ,获得积分10
30秒前
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
FashionBoy应助科研通管家采纳,获得20
33秒前
33秒前
Criminology34应助科研通管家采纳,获得10
33秒前
科目三应助科研通管家采纳,获得10
33秒前
等待黎明完成签到,获得积分10
34秒前
桐桐应助大方的听露采纳,获得10
34秒前
34秒前
烟花应助浅呀呀呀采纳,获得10
35秒前
36秒前
enchanted完成签到,获得积分10
38秒前
sunshine发布了新的文献求助10
39秒前
enchanted发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748007
关于积分的说明 15006238
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563542
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482258