已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangch198201完成签到 ,获得积分10
刚刚
lyy66964193完成签到,获得积分10
1秒前
哈哈哈哈发布了新的文献求助10
3秒前
清爽源智发布了新的文献求助10
3秒前
nature发布了新的文献求助10
4秒前
善学以致用应助luwenxuan采纳,获得10
4秒前
似水流年完成签到 ,获得积分10
6秒前
Doki发布了新的文献求助10
7秒前
lutiantian发布了新的文献求助10
9秒前
酷波er应助瑾钰满糖采纳,获得10
10秒前
11秒前
卡皮巴拉完成签到,获得积分10
11秒前
清爽源智完成签到,获得积分10
14秒前
16秒前
漂亮采波完成签到,获得积分10
17秒前
YamDaamCaa应助科研顺利啦采纳,获得50
18秒前
敏感的南露完成签到,获得积分10
20秒前
Nefelibata完成签到,获得积分10
21秒前
bystanding完成签到,获得积分10
21秒前
慕青应助zty123采纳,获得10
23秒前
彪壮的银耳汤完成签到 ,获得积分10
25秒前
轩辕山槐完成签到,获得积分10
31秒前
32秒前
zty123完成签到,获得积分10
34秒前
大树完成签到 ,获得积分10
36秒前
36秒前
干净思远完成签到,获得积分10
36秒前
zty123发布了新的文献求助10
38秒前
领导范儿应助漂亮采波采纳,获得10
39秒前
量子星尘发布了新的文献求助10
39秒前
zxy完成签到 ,获得积分10
39秒前
科研通AI2S应助科研通管家采纳,获得30
40秒前
40秒前
Akim应助科研通管家采纳,获得10
40秒前
40秒前
40秒前
40秒前
40秒前
40秒前
852应助科研通管家采纳,获得10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204422
捐赠科研通 3257298
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877842
科研通“疑难数据库(出版商)”最低求助积分说明 806595