The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑虎发布了新的文献求助10
1秒前
1秒前
研友_VZG64n完成签到,获得积分10
1秒前
1秒前
是萱萱鸭完成签到,获得积分10
3秒前
楠LEE发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
Akim应助科研通管家采纳,获得10
5秒前
甜甜的莺应助科研通管家采纳,获得10
5秒前
果汁有点甜完成签到,获得积分10
6秒前
6秒前
默默雅阳完成签到,获得积分10
6秒前
聪慧小霜应助微微采纳,获得10
6秒前
7秒前
wwwwwwwwwwww完成签到 ,获得积分10
7秒前
墨宁完成签到,获得积分10
7秒前
wen完成签到,获得积分10
9秒前
酷酷傲蕾发布了新的文献求助50
9秒前
HelloKun发布了新的文献求助10
10秒前
黑虎完成签到 ,获得积分10
10秒前
小李叭叭发布了新的文献求助10
11秒前
12秒前
橡树完成签到,获得积分10
12秒前
谁能卷过你啊完成签到,获得积分10
12秒前
上分完成签到,获得积分20
13秒前
14秒前
1234发布了新的文献求助10
16秒前
楠LEE完成签到,获得积分10
16秒前
房东家的猫完成签到,获得积分10
16秒前
情怀应助大力的诗蕾采纳,获得10
16秒前
17秒前
沧海一声笑完成签到,获得积分10
17秒前
冰千蕙完成签到,获得积分10
19秒前
gu发布了新的文献求助10
19秒前
elidan完成签到,获得积分10
20秒前
深情安青应助微微采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969940
求助须知:如何正确求助?哪些是违规求助? 3514642
关于积分的说明 11175298
捐赠科研通 3249947
什么是DOI,文献DOI怎么找? 1795178
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891