The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助xiaoju采纳,获得10
刚刚
小二郎应助我喜欢大学霸采纳,获得10
刚刚
1秒前
2秒前
完美世界应助yiy37采纳,获得10
2秒前
clover发布了新的文献求助10
2秒前
2秒前
科研通AI6应助kjwu采纳,获得10
2秒前
3秒前
3秒前
福泽聚宝象完成签到,获得积分10
4秒前
4秒前
日照金峰发布了新的文献求助10
4秒前
lvzhechen发布了新的文献求助10
4秒前
14发布了新的文献求助10
4秒前
5秒前
甘愿完成签到,获得积分20
5秒前
5秒前
QSJ发布了新的文献求助10
6秒前
6秒前
6秒前
小源发布了新的文献求助10
6秒前
6秒前
科研人发布了新的文献求助10
7秒前
小猴发布了新的文献求助10
7秒前
2464259931发布了新的文献求助10
7秒前
7秒前
陈楠完成签到,获得积分10
7秒前
7秒前
勤劳绍辉完成签到,获得积分20
8秒前
pw完成签到,获得积分10
8秒前
8秒前
Chester发布了新的文献求助10
9秒前
希望天下0贩的0应助君君采纳,获得10
9秒前
xukaixuan001发布了新的文献求助10
9秒前
852应助西米采纳,获得10
9秒前
10秒前
10秒前
14完成签到,获得积分10
10秒前
Corn_Dog发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409818
求助须知:如何正确求助?哪些是违规求助? 4527341
关于积分的说明 14110332
捐赠科研通 4441831
什么是DOI,文献DOI怎么找? 2437593
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723