The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tom完成签到,获得积分10
1秒前
Villanellel发布了新的文献求助10
2秒前
程艳完成签到 ,获得积分10
3秒前
MINGHUI完成签到,获得积分10
4秒前
4秒前
子车半烟完成签到,获得积分10
4秒前
6秒前
淳于安筠完成签到,获得积分10
6秒前
雨晴完成签到,获得积分10
9秒前
jbq发布了新的文献求助10
9秒前
joshar完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
blueblue完成签到,获得积分10
14秒前
落后秋烟完成签到,获得积分10
16秒前
大橙子发布了新的文献求助10
17秒前
LMY完成签到 ,获得积分10
17秒前
Betty完成签到 ,获得积分10
17秒前
NexusExplorer应助jbq采纳,获得10
18秒前
渔渔完成签到 ,获得积分10
18秒前
19秒前
Tangyartie完成签到 ,获得积分10
19秒前
skbkbe完成签到 ,获得积分10
20秒前
陈俊雷完成签到 ,获得积分0
21秒前
阿苗完成签到,获得积分10
22秒前
神勇的天问完成签到 ,获得积分10
23秒前
23秒前
advance完成签到,获得积分10
23秒前
李cc发布了新的文献求助10
24秒前
蒋念寒发布了新的文献求助10
25秒前
Sindy完成签到,获得积分10
25秒前
彭于晏应助HH采纳,获得30
27秒前
27秒前
朴实的小萱完成签到 ,获得积分10
28秒前
科研通AI5应助哭泣笑柳采纳,获得10
28秒前
28秒前
温暖的蚂蚁完成签到 ,获得积分10
31秒前
dhn123完成签到,获得积分10
31秒前
ccx完成签到,获得积分10
31秒前
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022