亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
12秒前
Liz发布了新的文献求助10
18秒前
美满的水卉完成签到,获得积分20
53秒前
57秒前
1分钟前
剑逍遥完成签到 ,获得积分10
1分钟前
1分钟前
guoyu发布了新的文献求助100
1分钟前
诸葛晴天发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得30
1分钟前
仁爱的雁芙完成签到,获得积分10
1分钟前
燃烧你的梦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
何琳发布了新的文献求助10
1分钟前
1分钟前
net完成签到 ,获得积分10
1分钟前
乐乐应助guoyu采纳,获得10
2分钟前
叽里呱啦发布了新的文献求助10
2分钟前
nuliguan完成签到 ,获得积分10
2分钟前
一丢丢完成签到 ,获得积分10
2分钟前
2分钟前
334niubi666完成签到 ,获得积分10
2分钟前
QQWQEQRQ完成签到,获得积分10
2分钟前
nalan发布了新的文献求助30
2分钟前
地塞米松磷酸钠完成签到,获得积分10
2分钟前
等待的mango应助nalan采纳,获得10
3分钟前
3分钟前
guoyu发布了新的文献求助10
3分钟前
周什么园发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
无花果应助guoyu采纳,获得10
3分钟前
3分钟前
Garyzhou发布了新的文献求助20
4分钟前
Garyzhou完成签到,获得积分10
4分钟前
东郭源智完成签到,获得积分20
4分钟前
dddd发布了新的文献求助10
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015678
关于积分的说明 8871627
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482240
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679951