The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助无聊的太清采纳,获得10
1秒前
花牛完成签到 ,获得积分10
2秒前
ZOO发布了新的文献求助30
2秒前
苏大脸完成签到,获得积分10
2秒前
鱼选发布了新的文献求助10
4秒前
马荣发布了新的文献求助10
5秒前
花牛关注了科研通微信公众号
5秒前
XiaoBai完成签到,获得积分10
7秒前
小二郎应助李永成采纳,获得10
7秒前
8秒前
独特的火车完成签到,获得积分10
8秒前
烂漫靖柏完成签到 ,获得积分10
8秒前
咸蛋黄巧克力完成签到,获得积分10
8秒前
NAMI完成签到 ,获得积分10
11秒前
恩善完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
科研通AI6应助美丽的周采纳,获得10
15秒前
勤恳的歌曲完成签到,获得积分10
15秒前
15秒前
明镜完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
栗子完成签到,获得积分10
19秒前
深情安青应助起风了采纳,获得10
20秒前
香蕉觅云应助Lismart采纳,获得10
20秒前
听风随影完成签到 ,获得积分20
21秒前
老金喵完成签到,获得积分20
23秒前
大模型应助Green采纳,获得10
25秒前
小竹完成签到 ,获得积分10
26秒前
加菲丰丰给优秀的煎蛋的求助进行了留言
27秒前
27秒前
28秒前
ZOO完成签到,获得积分10
29秒前
30秒前
单薄熊猫完成签到,获得积分10
31秒前
tomorrow完成签到 ,获得积分10
31秒前
31秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453860
求助须知:如何正确求助?哪些是违规求助? 4561372
关于积分的说明 14282285
捐赠科研通 4485318
什么是DOI,文献DOI怎么找? 2456660
邀请新用户注册赠送积分活动 1447375
关于科研通互助平台的介绍 1422701