清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助内向的绿采纳,获得10
4秒前
打打应助Hancen采纳,获得10
8秒前
NexusExplorer应助Z先生采纳,获得10
20秒前
28秒前
Z先生发布了新的文献求助10
32秒前
Z先生完成签到,获得积分20
41秒前
1分钟前
内向的绿发布了新的文献求助10
1分钟前
1分钟前
端庄洪纲完成签到 ,获得积分10
1分钟前
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
科研通AI6.1应助内向的绿采纳,获得10
1分钟前
不如看海完成签到 ,获得积分10
1分钟前
1分钟前
小珂完成签到 ,获得积分10
2分钟前
2分钟前
内向的绿发布了新的文献求助10
2分钟前
辣小扬完成签到 ,获得积分10
2分钟前
科研通AI6.1应助内向的绿采纳,获得10
2分钟前
2分钟前
Hancen发布了新的文献求助10
3分钟前
Hancen完成签到,获得积分10
3分钟前
Sunny完成签到,获得积分10
3分钟前
3分钟前
内向的绿发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6.1应助内向的绿采纳,获得10
3分钟前
4分钟前
大胆的碧菡完成签到,获得积分10
4分钟前
4分钟前
内向的绿发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
大医仁心完成签到 ,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773003
求助须知:如何正确求助?哪些是违规求助? 5605278
关于积分的说明 15430310
捐赠科研通 4905739
什么是DOI,文献DOI怎么找? 2639693
邀请新用户注册赠送积分活动 1587589
关于科研通互助平台的介绍 1542554