The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑万宝路完成签到 ,获得积分10
刚刚
zuly完成签到,获得积分10
刚刚
Jasper应助做梦采纳,获得10
刚刚
wzc发布了新的文献求助10
1秒前
shen完成签到 ,获得积分20
1秒前
1秒前
1秒前
2秒前
2秒前
ch发布了新的文献求助10
2秒前
chenchen完成签到,获得积分10
3秒前
自然小鸭子完成签到,获得积分10
3秒前
4秒前
Twonej应助zuly采纳,获得30
4秒前
王一鸣发布了新的文献求助10
4秒前
小蘑菇应助陈家傲采纳,获得10
4秒前
5秒前
Manchester完成签到,获得积分10
5秒前
5秒前
元谷雪发布了新的文献求助10
5秒前
月九完成签到,获得积分10
6秒前
evelyn发布了新的文献求助10
6秒前
6秒前
Ava应助唉科研太难了采纳,获得10
6秒前
智者雨人完成签到 ,获得积分10
6秒前
Cc完成签到,获得积分10
6秒前
顾矜应助云深不知处采纳,获得10
7秒前
Yuzy发布了新的文献求助10
7秒前
Sun发布了新的文献求助10
8秒前
8秒前
粉鼻子完成签到,获得积分10
9秒前
Qxy完成签到,获得积分10
9秒前
9秒前
ping发布了新的文献求助20
10秒前
菓小柒完成签到 ,获得积分10
10秒前
ll发布了新的文献求助10
10秒前
理工发布了新的文献求助10
10秒前
小飞爱科研完成签到,获得积分10
10秒前
万万完成签到 ,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659205
求助须知:如何正确求助?哪些是违规求助? 4827677
关于积分的说明 15085891
捐赠科研通 4817891
什么是DOI,文献DOI怎么找? 2578393
邀请新用户注册赠送积分活动 1533047
关于科研通互助平台的介绍 1491746