The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助mingmingjiu采纳,获得10
1秒前
善学以致用应助张艺馨采纳,获得10
2秒前
tRNA完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
白河愁发布了新的文献求助10
3秒前
4秒前
馒头完成签到 ,获得积分10
4秒前
叮叮发布了新的文献求助10
4秒前
6秒前
33完成签到 ,获得积分10
7秒前
鱼猫发布了新的文献求助10
8秒前
西贝应助Xxsy采纳,获得10
8秒前
林夕完成签到 ,获得积分10
9秒前
拼搏的桐完成签到,获得积分10
9秒前
10秒前
cc完成签到 ,获得积分10
11秒前
不会回信息的猪完成签到,获得积分20
12秒前
ChengYonghui完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
bill完成签到,获得积分10
13秒前
孟龙威完成签到,获得积分10
14秒前
心理咨熊师完成签到,获得积分10
14秒前
微风打了烊完成签到 ,获得积分10
14秒前
JFP完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
CodeCraft应助biu采纳,获得10
17秒前
飞快的语蕊完成签到,获得积分10
18秒前
小程同学完成签到,获得积分10
19秒前
竹本完成签到 ,获得积分10
19秒前
Vanness发布了新的文献求助10
19秒前
pancake发布了新的文献求助30
20秒前
21秒前
21秒前
22秒前
浮游应助ZZZ采纳,获得10
22秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337