亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
derek10086完成签到,获得积分10
1秒前
柠檬精翠翠完成签到 ,获得积分10
5秒前
derek10086发布了新的文献求助10
8秒前
8秒前
11秒前
Yangpc发布了新的文献求助10
15秒前
9202211125发布了新的文献求助10
19秒前
小马哥完成签到,获得积分10
25秒前
脑洞疼应助wwdd采纳,获得10
27秒前
科研通AI6应助Yangpc采纳,获得150
34秒前
若宫伊芙应助舒物采纳,获得10
40秒前
隐形的烧鸭完成签到,获得积分10
52秒前
59秒前
wwdd发布了新的文献求助10
1分钟前
keyanxinshou完成签到 ,获得积分10
1分钟前
wwdd完成签到,获得积分10
1分钟前
泯然完成签到,获得积分10
1分钟前
1分钟前
沉静的青旋完成签到 ,获得积分10
1分钟前
善学以致用应助zh采纳,获得10
1分钟前
1分钟前
Jane发布了新的文献求助30
1分钟前
1分钟前
zhaoeb发布了新的文献求助10
1分钟前
1分钟前
Gryphon完成签到,获得积分20
1分钟前
李冰洋完成签到,获得积分10
1分钟前
李冰洋发布了新的文献求助10
1分钟前
研友_VZG7GZ应助李冰洋采纳,获得10
1分钟前
yyds应助科研通管家采纳,获得100
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得50
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
sam发布了新的文献求助10
2分钟前
顾矜应助yuyu采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650677
求助须知:如何正确求助?哪些是违规求助? 4781288
关于积分的说明 15052487
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572338
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487341