Abstract Aqueous ammonium ion batteries (AAIBs) have garnered significant attention due to their unique energy storage mechanism. However, their progress is hindered by the relatively low capacities of NH 4 + host materials. Herein, the study proposes an electrodeposited tungsten oxide@polyaniline (WO x @PANI) composite electrode as a NH 4 + host, which achieves an ultrahigh capacity of 280.3 mAh g −1 at 1 A g −1 , surpassing the vast majority of previously reported NH 4 + host materials. The synergistic interaction of coordination chemistry and hydrogen bond chemistry between the WO x and PANI enhances the charge storage capacity. Experimental results indicate that the strong interfacial coordination bonding (N: →W 6+ ) effectively modulates the chemical environment of W atoms, enhances the protonation level of PANI, and thus consequently the conductivity and stability of the composites. Spectroscopy analysis further reveals a unique NH 4 + /H + co‐insertion mechanism, in which the interfacial hydrogen bond network (N‐H···O) accelerates proton involvement in the energy storage process and activates the Grotthuss hopping conduction of H + between the hydrated tungsten oxide layers. This work opens a new avenue to achieving high‐capacity NH 4 + storage through interfacial chemistry interactions, overcoming the capacity limitations of NH 4 + host materials for aqueous energy storage.