NeuroPred-ResSE: Predicting neuropeptides by integrating residual block and squeeze-excitation attention mechanism

机制(生物学) 残余物 块(置换群论) 激发 化学 神经肽 生化工程 计算机科学 工程类 数学 物理 生物化学 算法 受体 几何学 量子力学 电气工程
作者
Yunyun Liang,Mengyi Cao,Shengli Zhang
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:695: 115648-115648
标识
DOI:10.1016/j.ab.2024.115648
摘要

Neuropeptides play crucial roles in regulating neurological function acting as signaling molecules, which provide new opportunity for developing drugs for the treatment of neurological diseases. Therefore, it is very necessary to develop a rapid and accurate prediction model for neuropeptides. Although a few prediction tools have been developed, there is room for improvement in prediction accuracy by using deep learning approach. In this paper, we establish the NeuroPred-ResSE model based on residual block and squeeze-excitation attention mechanism. Firstly, we extract multi-features by using one-hot coding based on the NT5CT5 sequence, dipeptide deviation from expected mean and natural vector. Then, we integrate residual block and squeeze-excitation attention mechanism, which can capture and identify the most relevant attribute features. Finally, the accuracies of the training set and test set are 97.16 % and 96.60 % based on the 5-fold cross-validation and independent test, respectively, and other evaluation metrics have also obtained satisfactory results. The experimental results show that the performance of the NeuroPred-ResSE model outperforms those of existing state-of-the-art models, and our model is an effective, intelligent and robust prediction tool. The datasets and source codes are available at https://github.com/yunyunliang88/NeuroPred-ResSE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
杨涵发布了新的文献求助10
2秒前
chen发布了新的文献求助10
2秒前
杨艳完成签到,获得积分10
2秒前
2秒前
深情安青应助谦让的发箍采纳,获得20
3秒前
4秒前
丘比特应助简单馒头采纳,获得10
4秒前
Avery发布了新的文献求助10
4秒前
科研通AI6应助揽星采纳,获得10
5秒前
6秒前
小何完成签到 ,获得积分10
6秒前
洁净的幼珊完成签到,获得积分10
6秒前
小陈完成签到,获得积分10
7秒前
7秒前
realha完成签到,获得积分10
8秒前
8秒前
科研通AI6应助Lzj666采纳,获得10
9秒前
9秒前
9秒前
lmy9988应助杨涵采纳,获得20
10秒前
xiaofeifantasy应助杨涵采纳,获得20
10秒前
Simon_chat完成签到,获得积分0
10秒前
11秒前
李nb发布了新的文献求助10
11秒前
科研通AI6应助香菜头采纳,获得10
11秒前
留白发布了新的文献求助20
11秒前
852应助Avery采纳,获得10
11秒前
12秒前
ding应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
不安青牛应助科研通管家采纳,获得10
12秒前
QLLW应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
嘿嘿应助科研通管家采纳,获得30
13秒前
不安青牛应助科研通管家采纳,获得10
13秒前
栀尽夏完成签到,获得积分10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715