亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of early recurrence of adult‐type diffuse gliomas following radiotherapy using multi‐modal magnetic resonance images

磁共振成像 流体衰减反转恢复 医学 随机森林 放射治疗 胶质母细胞瘤 无线电技术 放射科 医学影像学 人工智能 计算机科学 癌症研究
作者
Elahheh Salari,Xuxin Chen,Jacob Wynne,Richard L. J. Qiu,Justin Roper,Hui‐Kuo G. Shu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
被引量:3
标识
DOI:10.1002/mp.17382
摘要

Abstract Background Adult‐type diffuse gliomas are among the central nervous system's most aggressive malignant primary neoplasms. Despite advancements in systemic therapies and technological improvements in radiation oncology treatment delivery, the survival outcome for these patients remains poor. Fast and accurate assessment of tumor response to oncologic treatments is crucial, as it can enable the early detection of recurrent or refractory gliomas, thereby allowing timely intervention with life‐prolonging salvage therapies. Purpose Radiomics is a developing field with great potential to improve medical image interpretation. This study aims to apply a radiomics‐based predictive model for classifying response to radiotherapy within the first 3 months post‐treatment. Methods Ninety‐five patients were selected from the Burdenko Glioblastoma Progression Dataset. Tumor regions were delineated in the axial plane on contrast‐enhanced T1(CE T1W) and T2 fluid‐attenuated inversion recovery (T2_FLAIR) magnetic resonance imaging (MRI). Hand‐crafted radiomic (HCR) features, including first‐ and second‐order features, were extracted using PyRadiomics (3.7.6) in Python (3.10). Then, recursive feature elimination with a random forest (RF) classifier was applied for feature dimensionality reduction. RF and support vector machine (SVM) classifiers were built to predict treatment outcomes using the selected features. Leave‐one‐out cross‐validation was employed to tune hyperparameters and evaluate the models. Results For each segmented target, 186 HCR features were extracted from the MRI sequence. Using the top‐ranked radiomic features from a combination of CE T1W and T2_FLAIR, an optimized classifier achieved the highest averaged area under the curve (AUC) of 0.829 ± 0.075 using the RF classifier. The HCR features of CE T1W produced the worst outcomes among all models (0.603 ± 0.024 and 0.615 ± 0.075 for RF and SVM classifiers, respectively). Conclusions We developed and evaluated a radiomics‐based predictive model for early tumor response to radiotherapy, demonstrating excellent performance supported by high AUC values. This model, harnessing radiomic features from multi‐modal MRI, showed superior predictive performance compared to single‐modal MRI approaches. These results underscore the potential of radiomics in clinical decision support for this disease process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助小王采纳,获得10
1秒前
2秒前
倚微风关注了科研通微信公众号
6秒前
Jinnnnn发布了新的文献求助10
6秒前
15秒前
21秒前
搜集达人应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
25秒前
太阳雨完成签到,获得积分10
27秒前
友好的笑柳完成签到,获得积分10
27秒前
太阳雨发布了新的文献求助10
30秒前
牛黄完成签到 ,获得积分10
30秒前
阿乌大王完成签到,获得积分10
36秒前
37秒前
38秒前
无心客应助刘坦苇采纳,获得10
45秒前
48秒前
ljx完成签到 ,获得积分0
49秒前
51秒前
科研通AI6应助令宏采纳,获得10
54秒前
cy完成签到 ,获得积分10
1分钟前
刘坦苇完成签到,获得积分10
1分钟前
慕青应助李李李采纳,获得10
1分钟前
1分钟前
Jinnnnn完成签到,获得积分10
1分钟前
缓慢冬莲发布了新的文献求助10
1分钟前
1分钟前
1分钟前
缓慢冬莲完成签到,获得积分10
1分钟前
1分钟前
禾苗发布了新的文献求助20
1分钟前
熠旅完成签到,获得积分10
1分钟前
1分钟前
李李李发布了新的文献求助10
1分钟前
wise111发布了新的文献求助10
1分钟前
1分钟前
李李李完成签到,获得积分10
1分钟前
查理发布了新的文献求助30
1分钟前
Akim应助wise111采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5313147
求助须知:如何正确求助?哪些是违规求助? 4456697
关于积分的说明 13866976
捐赠科研通 4345345
什么是DOI,文献DOI怎么找? 2386497
邀请新用户注册赠送积分活动 1380755
关于科研通互助平台的介绍 1349268