已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of early recurrence of adult‐type diffuse gliomas following radiotherapy using multi‐modal magnetic resonance images

磁共振成像 流体衰减反转恢复 医学 随机森林 放射治疗 胶质母细胞瘤 无线电技术 放射科 医学影像学 人工智能 计算机科学 癌症研究
作者
Elahheh Salari,Xuxin Chen,Jacob Wynne,Richard L. J. Qiu,Justin Roper,Hui‐Kuo G. Shu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
被引量:3
标识
DOI:10.1002/mp.17382
摘要

Abstract Background Adult‐type diffuse gliomas are among the central nervous system's most aggressive malignant primary neoplasms. Despite advancements in systemic therapies and technological improvements in radiation oncology treatment delivery, the survival outcome for these patients remains poor. Fast and accurate assessment of tumor response to oncologic treatments is crucial, as it can enable the early detection of recurrent or refractory gliomas, thereby allowing timely intervention with life‐prolonging salvage therapies. Purpose Radiomics is a developing field with great potential to improve medical image interpretation. This study aims to apply a radiomics‐based predictive model for classifying response to radiotherapy within the first 3 months post‐treatment. Methods Ninety‐five patients were selected from the Burdenko Glioblastoma Progression Dataset. Tumor regions were delineated in the axial plane on contrast‐enhanced T1(CE T1W) and T2 fluid‐attenuated inversion recovery (T2_FLAIR) magnetic resonance imaging (MRI). Hand‐crafted radiomic (HCR) features, including first‐ and second‐order features, were extracted using PyRadiomics (3.7.6) in Python (3.10). Then, recursive feature elimination with a random forest (RF) classifier was applied for feature dimensionality reduction. RF and support vector machine (SVM) classifiers were built to predict treatment outcomes using the selected features. Leave‐one‐out cross‐validation was employed to tune hyperparameters and evaluate the models. Results For each segmented target, 186 HCR features were extracted from the MRI sequence. Using the top‐ranked radiomic features from a combination of CE T1W and T2_FLAIR, an optimized classifier achieved the highest averaged area under the curve (AUC) of 0.829 ± 0.075 using the RF classifier. The HCR features of CE T1W produced the worst outcomes among all models (0.603 ± 0.024 and 0.615 ± 0.075 for RF and SVM classifiers, respectively). Conclusions We developed and evaluated a radiomics‐based predictive model for early tumor response to radiotherapy, demonstrating excellent performance supported by high AUC values. This model, harnessing radiomic features from multi‐modal MRI, showed superior predictive performance compared to single‐modal MRI approaches. These results underscore the potential of radiomics in clinical decision support for this disease process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
fat完成签到,获得积分10
2秒前
夏尔完成签到,获得积分10
2秒前
ccc发布了新的文献求助10
4秒前
石烟祝完成签到,获得积分10
4秒前
mmmio发布了新的文献求助10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
康康完成签到 ,获得积分10
7秒前
夏尔发布了新的文献求助10
8秒前
9秒前
11秒前
肖易应助xiaolong采纳,获得10
11秒前
汉堡包应助车鹭洋采纳,获得10
11秒前
黄毛虎完成签到 ,获得积分0
12秒前
FashionBoy应助有钱采纳,获得10
14秒前
darqin完成签到 ,获得积分10
14秒前
端庄的如花完成签到,获得积分10
14秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得30
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
16秒前
怕孤独的忆南完成签到,获得积分10
17秒前
17秒前
啦啦啦发布了新的文献求助10
17秒前
科研通AI2S应助creepppp采纳,获得10
17秒前
科研通AI6应助饱满的晓凡采纳,获得10
18秒前
无聊的迎波完成签到,获得积分20
20秒前
亲爱的安德烈完成签到,获得积分10
20秒前
穷鬼爬行发布了新的文献求助50
22秒前
彭于晏应助啦啦啦采纳,获得10
23秒前
肖易应助xiaolong采纳,获得10
23秒前
斯文梦寒完成签到 ,获得积分10
24秒前
25秒前
然来溪完成签到 ,获得积分10
25秒前
26秒前
26秒前
sunny66cai完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614