Prediction of early recurrence of adult‐type diffuse gliomas following radiotherapy using multi‐modal magnetic resonance images

磁共振成像 流体衰减反转恢复 医学 随机森林 放射治疗 胶质母细胞瘤 无线电技术 放射科 医学影像学 人工智能 计算机科学 癌症研究
作者
Elahheh Salari,Xuxin Chen,Jacob Wynne,Richard L. J. Qiu,Justin Roper,Hui‐Kuo G. Shu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17382
摘要

Abstract Background Adult‐type diffuse gliomas are among the central nervous system's most aggressive malignant primary neoplasms. Despite advancements in systemic therapies and technological improvements in radiation oncology treatment delivery, the survival outcome for these patients remains poor. Fast and accurate assessment of tumor response to oncologic treatments is crucial, as it can enable the early detection of recurrent or refractory gliomas, thereby allowing timely intervention with life‐prolonging salvage therapies. Purpose Radiomics is a developing field with great potential to improve medical image interpretation. This study aims to apply a radiomics‐based predictive model for classifying response to radiotherapy within the first 3 months post‐treatment. Methods Ninety‐five patients were selected from the Burdenko Glioblastoma Progression Dataset. Tumor regions were delineated in the axial plane on contrast‐enhanced T1(CE T1W) and T2 fluid‐attenuated inversion recovery (T2_FLAIR) magnetic resonance imaging (MRI). Hand‐crafted radiomic (HCR) features, including first‐ and second‐order features, were extracted using PyRadiomics (3.7.6) in Python (3.10). Then, recursive feature elimination with a random forest (RF) classifier was applied for feature dimensionality reduction. RF and support vector machine (SVM) classifiers were built to predict treatment outcomes using the selected features. Leave‐one‐out cross‐validation was employed to tune hyperparameters and evaluate the models. Results For each segmented target, 186 HCR features were extracted from the MRI sequence. Using the top‐ranked radiomic features from a combination of CE T1W and T2_FLAIR, an optimized classifier achieved the highest averaged area under the curve (AUC) of 0.829 ± 0.075 using the RF classifier. The HCR features of CE T1W produced the worst outcomes among all models (0.603 ± 0.024 and 0.615 ± 0.075 for RF and SVM classifiers, respectively). Conclusions We developed and evaluated a radiomics‐based predictive model for early tumor response to radiotherapy, demonstrating excellent performance supported by high AUC values. This model, harnessing radiomic features from multi‐modal MRI, showed superior predictive performance compared to single‐modal MRI approaches. These results underscore the potential of radiomics in clinical decision support for this disease process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我心永恒发布了新的文献求助10
刚刚
1秒前
打工牛牛发布了新的文献求助10
1秒前
2秒前
飘逸之玉完成签到,获得积分10
2秒前
DRFANG完成签到,获得积分10
3秒前
进击的巨人完成签到 ,获得积分10
3秒前
flyabc发布了新的文献求助10
3秒前
4秒前
香蕉觅云应助w_w采纳,获得10
4秒前
善学以致用应助milan001采纳,获得10
4秒前
科研通AI2S应助will采纳,获得10
5秒前
Akim应助zjw采纳,获得10
6秒前
6秒前
暗黑心理低手关注了科研通微信公众号
6秒前
赘婿应助fmh采纳,获得10
7秒前
xunmacaoyan发布了新的文献求助10
8秒前
吾星安处发布了新的文献求助10
8秒前
科研通AI2S应助davidhu采纳,获得10
8秒前
yzn完成签到,获得积分10
9秒前
鱼香肉丝发布了新的文献求助10
9秒前
zkl发布了新的文献求助10
9秒前
星星完成签到,获得积分10
9秒前
和谐面包完成签到,获得积分10
9秒前
flyabc完成签到,获得积分10
10秒前
阿信必发JACS完成签到,获得积分10
10秒前
DRFANG发布了新的文献求助10
11秒前
斯文败类应助liuzengzhang666采纳,获得10
11秒前
虚心完成签到 ,获得积分10
12秒前
13秒前
13秒前
胡说八道完成签到 ,获得积分10
13秒前
14秒前
酷酷的发布了新的文献求助80
15秒前
mads完成签到 ,获得积分10
15秒前
科研通AI2S应助含蓄的问寒采纳,获得10
16秒前
MarvelerYB3完成签到,获得积分10
16秒前
高山流水应助jiejie采纳,获得10
16秒前
鱼香肉丝完成签到,获得积分10
17秒前
简单夜山发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774624
求助须知:如何正确求助?哪些是违规求助? 3320436
关于积分的说明 10200257
捐赠科研通 3035039
什么是DOI,文献DOI怎么找? 1665336
邀请新用户注册赠送积分活动 796860
科研通“疑难数据库(出版商)”最低求助积分说明 757618