已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of early recurrence of adult‐type diffuse gliomas following radiotherapy using multi‐modal magnetic resonance images

磁共振成像 流体衰减反转恢复 医学 随机森林 放射治疗 胶质母细胞瘤 无线电技术 放射科 医学影像学 人工智能 计算机科学 癌症研究
作者
Elahheh Salari,Xuxin Chen,Jacob Wynne,Richard L. J. Qiu,Justin Roper,Hui‐Kuo G. Shu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17382
摘要

Abstract Background Adult‐type diffuse gliomas are among the central nervous system's most aggressive malignant primary neoplasms. Despite advancements in systemic therapies and technological improvements in radiation oncology treatment delivery, the survival outcome for these patients remains poor. Fast and accurate assessment of tumor response to oncologic treatments is crucial, as it can enable the early detection of recurrent or refractory gliomas, thereby allowing timely intervention with life‐prolonging salvage therapies. Purpose Radiomics is a developing field with great potential to improve medical image interpretation. This study aims to apply a radiomics‐based predictive model for classifying response to radiotherapy within the first 3 months post‐treatment. Methods Ninety‐five patients were selected from the Burdenko Glioblastoma Progression Dataset. Tumor regions were delineated in the axial plane on contrast‐enhanced T1(CE T1W) and T2 fluid‐attenuated inversion recovery (T2_FLAIR) magnetic resonance imaging (MRI). Hand‐crafted radiomic (HCR) features, including first‐ and second‐order features, were extracted using PyRadiomics (3.7.6) in Python (3.10). Then, recursive feature elimination with a random forest (RF) classifier was applied for feature dimensionality reduction. RF and support vector machine (SVM) classifiers were built to predict treatment outcomes using the selected features. Leave‐one‐out cross‐validation was employed to tune hyperparameters and evaluate the models. Results For each segmented target, 186 HCR features were extracted from the MRI sequence. Using the top‐ranked radiomic features from a combination of CE T1W and T2_FLAIR, an optimized classifier achieved the highest averaged area under the curve (AUC) of 0.829 ± 0.075 using the RF classifier. The HCR features of CE T1W produced the worst outcomes among all models (0.603 ± 0.024 and 0.615 ± 0.075 for RF and SVM classifiers, respectively). Conclusions We developed and evaluated a radiomics‐based predictive model for early tumor response to radiotherapy, demonstrating excellent performance supported by high AUC values. This model, harnessing radiomic features from multi‐modal MRI, showed superior predictive performance compared to single‐modal MRI approaches. These results underscore the potential of radiomics in clinical decision support for this disease process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助康2000采纳,获得10
2秒前
董竹君发布了新的文献求助10
3秒前
kjding发布了新的文献求助10
5秒前
zwww发布了新的文献求助10
5秒前
chen发布了新的文献求助10
7秒前
11秒前
star完成签到 ,获得积分10
11秒前
14秒前
17秒前
jyw发布了新的文献求助10
20秒前
调研昵称发布了新的文献求助10
20秒前
24秒前
WY发布了新的文献求助10
24秒前
25秒前
28秒前
一一应助小陈要发一区采纳,获得10
28秒前
小胖子发布了新的文献求助10
29秒前
饱满的百招完成签到 ,获得积分10
32秒前
追寻半仙完成签到 ,获得积分10
33秒前
gjww应助WY采纳,获得10
36秒前
37秒前
zhukeqinag完成签到,获得积分10
37秒前
ding应助zwww采纳,获得10
41秒前
Coral.完成签到,获得积分10
43秒前
46秒前
Coral.发布了新的文献求助20
46秒前
楚天阔发布了新的文献求助10
47秒前
昂口3完成签到 ,获得积分10
51秒前
小白又鹏发布了新的文献求助10
51秒前
51秒前
潇湘完成签到 ,获得积分10
55秒前
56秒前
58秒前
田様应助小白又鹏采纳,获得10
1分钟前
李晨阳发布了新的文献求助10
1分钟前
科研通AI2S应助润森采纳,获得10
1分钟前
小李发布了新的文献求助50
1分钟前
1分钟前
1分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084988
求助须知:如何正确求助?哪些是违规求助? 2738035
关于积分的说明 7547906
捐赠科研通 2387624
什么是DOI,文献DOI怎么找? 1266055
科研通“疑难数据库(出版商)”最低求助积分说明 613267
版权声明 598450