Prediction of early recurrence of adult‐type diffuse gliomas following radiotherapy using multi‐modal magnetic resonance images

磁共振成像 流体衰减反转恢复 医学 随机森林 放射治疗 胶质母细胞瘤 无线电技术 放射科 医学影像学 人工智能 计算机科学 癌症研究
作者
Elahheh Salari,Xuxin Chen,Jacob Wynne,Richard L. J. Qiu,Justin Roper,Hui‐Kuo G. Shu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
被引量:3
标识
DOI:10.1002/mp.17382
摘要

Abstract Background Adult‐type diffuse gliomas are among the central nervous system's most aggressive malignant primary neoplasms. Despite advancements in systemic therapies and technological improvements in radiation oncology treatment delivery, the survival outcome for these patients remains poor. Fast and accurate assessment of tumor response to oncologic treatments is crucial, as it can enable the early detection of recurrent or refractory gliomas, thereby allowing timely intervention with life‐prolonging salvage therapies. Purpose Radiomics is a developing field with great potential to improve medical image interpretation. This study aims to apply a radiomics‐based predictive model for classifying response to radiotherapy within the first 3 months post‐treatment. Methods Ninety‐five patients were selected from the Burdenko Glioblastoma Progression Dataset. Tumor regions were delineated in the axial plane on contrast‐enhanced T1(CE T1W) and T2 fluid‐attenuated inversion recovery (T2_FLAIR) magnetic resonance imaging (MRI). Hand‐crafted radiomic (HCR) features, including first‐ and second‐order features, were extracted using PyRadiomics (3.7.6) in Python (3.10). Then, recursive feature elimination with a random forest (RF) classifier was applied for feature dimensionality reduction. RF and support vector machine (SVM) classifiers were built to predict treatment outcomes using the selected features. Leave‐one‐out cross‐validation was employed to tune hyperparameters and evaluate the models. Results For each segmented target, 186 HCR features were extracted from the MRI sequence. Using the top‐ranked radiomic features from a combination of CE T1W and T2_FLAIR, an optimized classifier achieved the highest averaged area under the curve (AUC) of 0.829 ± 0.075 using the RF classifier. The HCR features of CE T1W produced the worst outcomes among all models (0.603 ± 0.024 and 0.615 ± 0.075 for RF and SVM classifiers, respectively). Conclusions We developed and evaluated a radiomics‐based predictive model for early tumor response to radiotherapy, demonstrating excellent performance supported by high AUC values. This model, harnessing radiomic features from multi‐modal MRI, showed superior predictive performance compared to single‐modal MRI approaches. These results underscore the potential of radiomics in clinical decision support for this disease process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
放青松完成签到,获得积分10
刚刚
勤恳的鲂完成签到 ,获得积分10
1秒前
1秒前
2秒前
小医发布了新的文献求助10
2秒前
浮游应助中国大陆采纳,获得10
3秒前
3秒前
乐乐应助中国大陆采纳,获得10
3秒前
吉他平方完成签到,获得积分10
4秒前
4秒前
5秒前
xie发布了新的文献求助10
5秒前
爵士黄瓜完成签到,获得积分10
5秒前
慢慢人完成签到,获得积分10
5秒前
6秒前
Li发布了新的文献求助10
6秒前
7秒前
7秒前
黄卓智完成签到,获得积分20
9秒前
lixioani219发布了新的文献求助10
9秒前
10秒前
吉他平方发布了新的文献求助10
10秒前
10秒前
爵士黄瓜发布了新的文献求助10
11秒前
11秒前
乐乐应助陈秋采纳,获得10
12秒前
曾经耳机发布了新的文献求助30
13秒前
调皮戒指完成签到,获得积分20
14秒前
虚心的冷松完成签到,获得积分10
14秒前
xie完成签到,获得积分10
14秒前
黄卓智发布了新的文献求助10
14秒前
科研通AI5应助lixioani219采纳,获得10
15秒前
15秒前
jyy完成签到 ,获得积分10
15秒前
感动咖啡完成签到,获得积分10
16秒前
肖肖肖完成签到 ,获得积分10
18秒前
顾矜应助唠叨的以冬采纳,获得10
19秒前
哇塞完成签到,获得积分10
19秒前
小泉发布了新的文献求助30
20秒前
华伟他die完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062030
求助须知:如何正确求助?哪些是违规求助? 4285935
关于积分的说明 13355964
捐赠科研通 4103820
什么是DOI,文献DOI怎么找? 2246990
邀请新用户注册赠送积分活动 1252642
关于科研通互助平台的介绍 1183592