Monitoring Soybean Soil Moisture Content Based on UAV Multispectral and Thermal-Infrared Remote-Sensing Information Fusion

多光谱图像 遥感 土壤质地 含水量 环境科学 植被(病理学) 多光谱模式识别 传感器融合 计算机科学 土壤科学 人工智能 土壤水分 地理 工程类 岩土工程 医学 病理
作者
Hongzhao Shi,Zhiying Liu,Siqi Li,Ming Jin,Zijun Tang,Tao Sun,Xiaochi Liu,Zhijun Li,Fucang Zhang,Youzhen Xiang
出处
期刊:Plants [Multidisciplinary Digital Publishing Institute]
卷期号:13 (17): 2417-2417
标识
DOI:10.3390/plants13172417
摘要

By integrating the thermal characteristics from thermal-infrared remote sensing with the physiological and structural information of vegetation revealed by multispectral remote sensing, a more comprehensive assessment of the crop soil-moisture-status response can be achieved. In this study, multispectral and thermal-infrared remote-sensing data, along with soil-moisture-content (SMC) samples (0~20 cm, 20~40 cm, and 40~60 cm soil layers), were collected during the flowering stage of soybean. Data sources included vegetation indices, texture features, texture indices, and thermal-infrared vegetation indices. Spectral parameters with a significant correlation level (p < 0.01) were selected and input into the model as single- and fuse-input variables. Three machine learning methods, eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Genetic Algorithm-optimized Backpropagation Neural Network (GA-BP), were utilized to construct prediction models for soybean SMC based on the fusion of UAV multispectral and thermal-infrared remote-sensing information. The results indicated that among the single-input variables, the vegetation indices (VIs) derived from multispectral sensors had the optimal accuracy for monitoring SMC in different soil layers under soybean cultivation. The prediction accuracy was the lowest when using single-texture information, while the combination of texture feature values into new texture indices significantly improved the performance of estimating SMC. The fusion of vegetation indices (VIs), texture indices (TIs), and thermal-infrared vegetation indices (TVIs) provided a better prediction of soybean SMC. The optimal prediction model for SMC in different soil layers under soybean cultivation was constructed based on the input combination of VIs + TIs + TVIs, and XGBoost was identified as the preferred method for soybean SMC monitoring and modeling, with its R2 = 0.780, RMSE = 0.437%, and MRE = 1.667% in predicting 0~20 cm SMC. In summary, the fusion of UAV multispectral and thermal-infrared remote-sensing information has good application value in predicting SMC in different soil layers under soybean cultivation. This study can provide technical support for precise management of soybean soil moisture status using the UAV platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
victory_liu完成签到,获得积分10
1秒前
3秒前
wdlc完成签到,获得积分10
3秒前
心系天下完成签到 ,获得积分10
8秒前
小白加油完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
24秒前
danli完成签到 ,获得积分10
25秒前
26秒前
鲤鱼越越完成签到 ,获得积分10
27秒前
平常的羊完成签到 ,获得积分10
30秒前
yy完成签到 ,获得积分10
32秒前
现实的大白完成签到 ,获得积分10
32秒前
wonwojo完成签到 ,获得积分10
33秒前
35秒前
罐装冰块完成签到,获得积分10
37秒前
你好完成签到 ,获得积分10
38秒前
46秒前
lhn完成签到 ,获得积分10
47秒前
量子星尘发布了新的文献求助10
56秒前
zhaoyaoshi完成签到 ,获得积分10
58秒前
海的呼唤完成签到,获得积分10
1分钟前
西柚完成签到,获得积分10
1分钟前
早日毕业完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
vvvaee完成签到 ,获得积分10
1分钟前
tianmj完成签到,获得积分10
1分钟前
无为完成签到 ,获得积分10
1分钟前
请叫我风吹麦浪应助tianmj采纳,获得10
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
耍酷鼠标完成签到 ,获得积分0
1分钟前
雾黎颖完成签到 ,获得积分10
1分钟前
啦啦啦啦完成签到 ,获得积分10
1分钟前
1分钟前
陈博士完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
酷酷小子完成签到 ,获得积分10
1分钟前
tonydymt完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015541
求助须知:如何正确求助?哪些是违规求助? 3555522
关于积分的说明 11318076
捐赠科研通 3288696
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015