Assessment of ChatGPT’s Compliance with ESC-Acute Coronary Syndrome Management Guidelines at 30-Day Intervals

急性冠脉综合征 医学 顺从(心理学) 内科学 重症监护医学 心脏病学 急诊医学 心肌梗塞 心理学 社会心理学
作者
Muhammet Geneş,Murat Çeli̇k
出处
期刊:Life [Multidisciplinary Digital Publishing Institute]
卷期号:14 (10): 1235-1235 被引量:1
标识
DOI:10.3390/life14101235
摘要

Background: Despite ongoing advancements in healthcare, acute coronary syndromes (ACS) remain a leading cause of morbidity and mortality. The 2023 European Society of Cardiology (ESC) guidelines have introduced significant improvements in ACS management. Concurrently, artificial intelligence (AI), particularly models like ChatGPT, is showing promise in supporting clinical decision-making and education. Methods: This study evaluates the performance of ChatGPT-v4 in adhering to ESC guidelines for ACS management over a 30-day interval. Based on ESC guidelines, a dataset of 100 questions was used to assess ChatGPT’s accuracy and consistency. The questions were divided into binary (true/false) and multiple-choice formats. The AI’s responses were initially evaluated and then re-evaluated after 30 days, using accuracy and consistency as primary metrics. Results: ChatGPT’s accuracy in answering ACS-related binary and multiple-choice questions was evaluated at baseline and after 30 days. For binary questions, accuracy was 84% initially and 86% after 30 days, with no significant change (p = 0.564). Cohen’s Kappa was 0.94, indicating excellent agreement. Multiple-choice question accuracy was 80% initially, improving to 84% after 30 days, also without significant change (p = 0.527). Cohen’s Kappa was 0.93, reflecting similarly high consistency. These results suggest stable AI performance with minor fluctuations. Conclusions: Despite variations in performance on binary and multiple-choice questions, ChatGPT shows significant promise as a clinical support tool in ACS management. However, it is crucial to consider limitations such as fluctuations and hallucinations, which could lead to severe issues in clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放雪碧完成签到,获得积分10
刚刚
刚刚
little发布了新的文献求助10
1秒前
wen发布了新的文献求助10
1秒前
高高海瑶完成签到,获得积分10
2秒前
2秒前
球球应助DW采纳,获得10
3秒前
球球应助DW采纳,获得10
3秒前
Karlie发布了新的文献求助10
3秒前
李健的粉丝团团长应助fwz采纳,获得10
4秒前
CipherSage应助灰底爆米花采纳,获得10
4秒前
王伟涛完成签到,获得积分10
5秒前
David完成签到,获得积分10
5秒前
大模型应助一个舒采纳,获得10
5秒前
vovoking完成签到 ,获得积分10
5秒前
小马完成签到,获得积分10
6秒前
OhOHOh完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
科研通AI2S应助hearz采纳,获得10
7秒前
大模型应助QDD采纳,获得10
7秒前
8秒前
Amber发布了新的文献求助10
8秒前
9秒前
冷酷新柔发布了新的文献求助10
10秒前
丫丫发布了新的文献求助10
10秒前
无辜的星月完成签到,获得积分20
10秒前
12秒前
一期一发布了新的文献求助10
12秒前
12秒前
星宿完成签到,获得积分10
13秒前
13秒前
面包发布了新的文献求助10
13秒前
Rory完成签到 ,获得积分10
13秒前
xxx发布了新的文献求助10
14秒前
周洋完成签到,获得积分10
15秒前
你说完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016711
求助须知:如何正确求助?哪些是违规求助? 3556869
关于积分的说明 11322988
捐赠科研通 3289588
什么是DOI,文献DOI怎么找? 1812514
邀请新用户注册赠送积分活动 888100
科研通“疑难数据库(出版商)”最低求助积分说明 812121