Assessment of ChatGPT’s Compliance with ESC-Acute Coronary Syndrome Management Guidelines at 30-Day Intervals

急性冠脉综合征 医学 顺从(心理学) 内科学 重症监护医学 心脏病学 急诊医学 心肌梗塞 心理学 社会心理学
作者
Muhammet Geneş,Murat Çeli̇k
出处
期刊:Life [MDPI AG]
卷期号:14 (10): 1235-1235 被引量:1
标识
DOI:10.3390/life14101235
摘要

Background: Despite ongoing advancements in healthcare, acute coronary syndromes (ACS) remain a leading cause of morbidity and mortality. The 2023 European Society of Cardiology (ESC) guidelines have introduced significant improvements in ACS management. Concurrently, artificial intelligence (AI), particularly models like ChatGPT, is showing promise in supporting clinical decision-making and education. Methods: This study evaluates the performance of ChatGPT-v4 in adhering to ESC guidelines for ACS management over a 30-day interval. Based on ESC guidelines, a dataset of 100 questions was used to assess ChatGPT’s accuracy and consistency. The questions were divided into binary (true/false) and multiple-choice formats. The AI’s responses were initially evaluated and then re-evaluated after 30 days, using accuracy and consistency as primary metrics. Results: ChatGPT’s accuracy in answering ACS-related binary and multiple-choice questions was evaluated at baseline and after 30 days. For binary questions, accuracy was 84% initially and 86% after 30 days, with no significant change (p = 0.564). Cohen’s Kappa was 0.94, indicating excellent agreement. Multiple-choice question accuracy was 80% initially, improving to 84% after 30 days, also without significant change (p = 0.527). Cohen’s Kappa was 0.93, reflecting similarly high consistency. These results suggest stable AI performance with minor fluctuations. Conclusions: Despite variations in performance on binary and multiple-choice questions, ChatGPT shows significant promise as a clinical support tool in ACS management. However, it is crucial to consider limitations such as fluctuations and hallucinations, which could lead to severe issues in clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助研一小刘采纳,获得10
刚刚
刚刚
水萝卜完成签到 ,获得积分10
1秒前
1秒前
高高完成签到,获得积分10
2秒前
甜甜晓露发布了新的文献求助10
2秒前
ChiDaiOLD发布了新的文献求助10
3秒前
4秒前
szl完成签到,获得积分10
4秒前
5秒前
orixero应助跳跃的静曼采纳,获得10
5秒前
诺奖离我十万八千里完成签到,获得积分10
5秒前
高高发布了新的文献求助10
5秒前
9秒前
深情安青应助机智的青槐采纳,获得10
9秒前
茶茶发布了新的文献求助10
9秒前
szl发布了新的文献求助10
9秒前
Lucas应助京阿尼采纳,获得10
10秒前
甜甜晓露完成签到,获得积分10
11秒前
科研通AI5应助qifa采纳,获得10
11秒前
shrike完成签到 ,获得积分10
11秒前
有魅力白开水完成签到,获得积分20
11秒前
小蒲完成签到 ,获得积分10
12秒前
万能图书馆应助大力鱼采纳,获得10
12秒前
13秒前
Rrr发布了新的文献求助10
14秒前
跳跃的静曼完成签到,获得积分10
14秒前
丰富的不惜完成签到,获得积分10
15秒前
16秒前
wfc完成签到,获得积分10
16秒前
浅梨涡完成签到 ,获得积分10
18秒前
JamesPei应助椰子熟了耶采纳,获得20
19秒前
hanyang965发布了新的文献求助10
19秒前
orixero应助喵呜采纳,获得10
19秒前
19秒前
19秒前
20秒前
en发布了新的文献求助10
20秒前
21秒前
白宝宝北北白应助氕氘氚采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808