Pipeline leak detection based on multiscale convolution neural network and improved symmetric dot pattern optimized by grasshopper optimization algorithm

蚱蜢 管道(软件) 算法 人工神经网络 卷积(计算机科学) 计算机科学 检漏 泄漏 人工智能 工程类 地质学 古生物学 环境工程 程序设计语言
作者
Yong Zhang,Pengfei Xing,Hongli Dong,Jingyi Lu,X. Zhou,Yina Zhou,Hao Liang,Gongfa Li
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
标识
DOI:10.1177/01423312241273781
摘要

In the engineering of pipeline condition identification, the complexity of pipeline signal components often results in insufficient feature extraction with traditional feature extraction-machine learning methods, thereby affecting the recognition performance. In order to effectively address the aforementioned issues, based on deep learning, we propose a multiscale convolution neural network (MCNN) to effectively identify pipeline conditions by classifying improved symmetry dot pattern (ISDP) images of one-dimensional negative pressure wave signals of pipelines. First, we propose the ISDP transformation method, considering that negative pressure wave signals of pipes with different leakage degrees have different amplitude changes. The ISDP transformation method transforms the negative pressure wave signal of the pipeline from one dimension to two dimensions. Then the grasshopper optimization algorithm (GOA) was employed to optimize the parameters of the ISDP algorithm. Second, we build the MCNN depth network to train and classify the ISDP image. The MCNN can simultaneously learn both the global and local features of an image. The corresponding evaluation indicators show that the proposed method of working condition recognition using MCNN to classify and recognize the ISDP image of pipeline signal has higher accuracy and robustness than traditional machine learning methods and common deep learning methods. The evaluation results prove that the proposed algorithm is effective in pipeline signal classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋成为完成签到,获得积分10
刚刚
ArenasZ完成签到,获得积分20
1秒前
英姑应助一心向雨采纳,获得30
1秒前
LaTeXer应助8888采纳,获得30
1秒前
上好佳发布了新的文献求助10
1秒前
法芙娜发布了新的文献求助10
1秒前
5秒前
Owen应助嗷嗷采纳,获得10
6秒前
zzyyy发布了新的文献求助10
6秒前
爱听歌问寒完成签到,获得积分20
6秒前
8秒前
慕青应助杨旭东采纳,获得10
8秒前
脑洞疼应助科研小王采纳,获得10
8秒前
wanwan应助白桃乌龙采纳,获得10
8秒前
8秒前
9秒前
kaka发布了新的文献求助10
10秒前
慕青应助旺仔狗狗采纳,获得10
10秒前
峥2发布了新的文献求助10
11秒前
childe完成签到,获得积分10
11秒前
zzyyy完成签到,获得积分10
12秒前
12秒前
摩登兄弟发布了新的文献求助10
13秒前
13秒前
16秒前
16秒前
哈哈完成签到,获得积分10
16秒前
Paris完成签到 ,获得积分10
17秒前
19秒前
19秒前
19秒前
19秒前
kaka完成签到,获得积分10
19秒前
打打应助王海丽采纳,获得10
19秒前
19秒前
20秒前
猪猪hero发布了新的文献求助30
20秒前
孙孙孙啊完成签到,获得积分10
21秒前
21秒前
wisper发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992193
求助须知:如何正确求助?哪些是违规求助? 3533192
关于积分的说明 11261459
捐赠科研通 3272613
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809442