已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a machine learning‐based approach to identify high‐risk diabetic cardiomyopathy phenotype

医学 队列 内科学 心脏病学 心肌病 糖尿病 糖尿病性心肌病 心力衰竭 内分泌学
作者
Matthew W. Segar,Muhammad Usman,Kershaw V. Patel,Muhammad Shahzeb Khan,Javed Butler,Lakshman Manjunath,Carolyn S.P. Lam,Subodh Verma,DuWayne L. Willett,David Kao,James L. Januzzi,Ambarish Pandey
出处
期刊:European Journal of Heart Failure [Wiley]
标识
DOI:10.1002/ejhf.3443
摘要

Aims Abnormalities in specific echocardiographic parameters and cardiac biomarkers have been reported among individuals with diabetes. However, a comprehensive characterization of diabetic cardiomyopathy (DbCM), a subclinical stage of myocardial abnormalities that precede the development of clinical heart failure (HF), is lacking. In this study, we developed and validated a machine learning‐based clustering approach to identify the high‐risk DbCM phenotype based on echocardiographic and cardiac biomarker parameters. Methods and results Among individuals with diabetes from the Atherosclerosis Risk in Communities (ARIC) cohort who were free of cardiovascular disease and other potential aetiologies of cardiomyopathy (training, n = 1199), unsupervised hierarchical clustering was performed using echocardiographic parameters and cardiac biomarkers of neurohormonal stress and chronic myocardial injury (total 25 variables). The high‐risk DbCM phenotype was identified based on the incidence of HF on follow‐up. A deep neural network (DeepNN) classifier was developed to predict DbCM in the ARIC training cohort and validated in an external community‐based cohort (Cardiovascular Health Study [CHS]; n = 802) and an electronic health record (EHR) cohort ( n = 5071). Clustering identified three phenogroups in the derivation cohort. Phenogroup‐3 ( n = 324, 27% of the cohort) had significantly higher 5‐year HF incidence than other phenogroups (12.1% vs. 4.6% [phenogroup 2] vs. 3.1% [phenogroup 1]) and was identified as the high‐risk DbCM phenotype. The key echocardiographic predictors of high‐risk DbCM phenotype were higher NT‐proBNP levels, increased left ventricular mass and left atrial size, and worse diastolic function. In the CHS and University of Texas (UT) Southwestern EHR validation cohorts, the DeepNN classifier identified 16% and 29% of participants with DbCM, respectively. Participants with (vs. without) high‐risk DbCM phenotype in the external validation cohorts had a significantly higher incidence of HF (hazard ratio [95% confidence interval] 1.61 [1.18–2.19] in CHS and 1.34 [1.08–1.65] in the UT Southwestern EHR cohort). Conclusion Machine learning‐based techniques may identify 16% to 29% of individuals with diabetes as having a high‐risk DbCM phenotype who may benefit from more aggressive implementation of HF preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸡腿子发布了新的文献求助10
3秒前
cx330完成签到,获得积分20
3秒前
千纸鹤完成签到 ,获得积分10
4秒前
知微完成签到,获得积分10
6秒前
科研通AI2S应助shencheng采纳,获得10
8秒前
光亮如彤完成签到,获得积分10
9秒前
9秒前
Dai JZ完成签到 ,获得积分10
12秒前
眼睛大的胡萝卜完成签到 ,获得积分10
13秒前
wu发布了新的文献求助10
13秒前
有点灰完成签到,获得积分10
14秒前
15秒前
15秒前
自行者发布了新的文献求助10
21秒前
23秒前
饱满跳跳糖完成签到,获得积分10
27秒前
wu发布了新的文献求助10
28秒前
小鸟芋圆露露完成签到 ,获得积分10
31秒前
科研小白狗完成签到 ,获得积分10
32秒前
涵Allen完成签到 ,获得积分10
32秒前
38秒前
科目三应助熬夜的鹰采纳,获得30
39秒前
41秒前
李爱国应助深情的阿宇采纳,获得10
44秒前
阿俊1212完成签到,获得积分10
45秒前
1989发布了新的文献求助10
45秒前
上官若男应助迷路安白采纳,获得10
47秒前
ZJ完成签到,获得积分10
49秒前
乐乐应助现代小笼包采纳,获得10
49秒前
标致的山水完成签到 ,获得积分10
51秒前
52秒前
53秒前
longjiafang完成签到 ,获得积分10
56秒前
涵Allen完成签到 ,获得积分10
57秒前
57秒前
58秒前
LawShu完成签到 ,获得积分10
59秒前
1989完成签到,获得积分10
59秒前
1分钟前
鱼日发布了新的文献求助10
1分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164729
求助须知:如何正确求助?哪些是违规求助? 2815800
关于积分的说明 7910197
捐赠科研通 2475349
什么是DOI,文献DOI怎么找? 1318097
科研通“疑难数据库(出版商)”最低求助积分说明 632005
版权声明 602282