Development and validation of a machine learning‐based approach to identify high‐risk diabetic cardiomyopathy phenotype

医学 队列 内科学 心脏病学 心肌病 糖尿病 糖尿病性心肌病 心力衰竭 内分泌学
作者
Matthew W. Segar,Muhammad Usman,Kershaw V. Patel,Muhammad Shahzeb Khan,Javed Butler,Lakshman Manjunath,Carolyn S.P. Lam,Subodh Verma,DuWayne L. Willett,David Kao,James L. Januzzi,Ambarish Pandey
出处
期刊:European Journal of Heart Failure [Elsevier BV]
被引量:1
标识
DOI:10.1002/ejhf.3443
摘要

Aims Abnormalities in specific echocardiographic parameters and cardiac biomarkers have been reported among individuals with diabetes. However, a comprehensive characterization of diabetic cardiomyopathy (DbCM), a subclinical stage of myocardial abnormalities that precede the development of clinical heart failure (HF), is lacking. In this study, we developed and validated a machine learning‐based clustering approach to identify the high‐risk DbCM phenotype based on echocardiographic and cardiac biomarker parameters. Methods and results Among individuals with diabetes from the Atherosclerosis Risk in Communities (ARIC) cohort who were free of cardiovascular disease and other potential aetiologies of cardiomyopathy (training, n = 1199), unsupervised hierarchical clustering was performed using echocardiographic parameters and cardiac biomarkers of neurohormonal stress and chronic myocardial injury (total 25 variables). The high‐risk DbCM phenotype was identified based on the incidence of HF on follow‐up. A deep neural network (DeepNN) classifier was developed to predict DbCM in the ARIC training cohort and validated in an external community‐based cohort (Cardiovascular Health Study [CHS]; n = 802) and an electronic health record (EHR) cohort ( n = 5071). Clustering identified three phenogroups in the derivation cohort. Phenogroup‐3 ( n = 324, 27% of the cohort) had significantly higher 5‐year HF incidence than other phenogroups (12.1% vs. 4.6% [phenogroup 2] vs. 3.1% [phenogroup 1]) and was identified as the high‐risk DbCM phenotype. The key echocardiographic predictors of high‐risk DbCM phenotype were higher NT‐proBNP levels, increased left ventricular mass and left atrial size, and worse diastolic function. In the CHS and University of Texas (UT) Southwestern EHR validation cohorts, the DeepNN classifier identified 16% and 29% of participants with DbCM, respectively. Participants with (vs. without) high‐risk DbCM phenotype in the external validation cohorts had a significantly higher incidence of HF (hazard ratio [95% confidence interval] 1.61 [1.18–2.19] in CHS and 1.34 [1.08–1.65] in the UT Southwestern EHR cohort). Conclusion Machine learning‐based techniques may identify 16% to 29% of individuals with diabetes as having a high‐risk DbCM phenotype who may benefit from more aggressive implementation of HF preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橘猫ADD完成签到,获得积分10
1秒前
湖工大保卫处完成签到,获得积分10
2秒前
啦啦啦啦完成签到,获得积分10
4秒前
4秒前
4秒前
领导范儿应助Sheryl采纳,获得10
5秒前
CodeCraft应助橘猫ADD采纳,获得10
5秒前
看不懂完成签到,获得积分10
5秒前
SYLH应助MZ采纳,获得10
6秒前
6秒前
醉挽清风发布了新的文献求助10
7秒前
log发布了新的文献求助10
7秒前
李麟发布了新的文献求助10
7秒前
小马甲应助烂漫的雁开采纳,获得10
8秒前
温冰雪应助GSGSG采纳,获得10
9秒前
ruiruili发布了新的文献求助10
9秒前
ydfqlzj发布了新的文献求助10
9秒前
慕青应助宇宙无敌冲冲鸭采纳,获得10
10秒前
韩浩男发布了新的文献求助20
10秒前
华十三发布了新的文献求助10
10秒前
深情的采波完成签到,获得积分10
11秒前
羽客完成签到,获得积分10
11秒前
11秒前
znn完成签到,获得积分10
12秒前
13秒前
13秒前
Wn发布了新的文献求助10
13秒前
13秒前
15秒前
好好好完成签到,获得积分10
15秒前
15秒前
zho发布了新的文献求助10
15秒前
znn发布了新的文献求助10
16秒前
wwpedd发布了新的文献求助30
16秒前
16秒前
Rainna发布了新的文献求助30
18秒前
18秒前
ruiruili完成签到,获得积分10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089