A Modified Transformer Network for Seizure Detection Using EEG Signals

计算机科学 模式识别(心理学) 脑电图 人工智能 卷积神经网络 变压器 前馈 人工神经网络 工程类 医学 电压 电气工程 精神科 控制工程
作者
Wenrong Hu,Juan Wang,Feng Li,Daohui Ge,Yuxia Wang,Qingwei Jia,Shasha Yuan
出处
期刊:International Journal of Neural Systems [World Scientific]
被引量:1
标识
DOI:10.1142/s0129065725500030
摘要

Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance. In this study, an enhanced transformer network named Inresformer is proposed for seizure detection, which is combined with Inception and Residual network extracting different scale features of electroencephalography (EEG) signals to enrich the feature representation. In addition, the improved transformer network replaces the existing Feedforward layers with two half-step Feedforward layers to enhance the nonlinear representation of the model. The proposed architecture utilizes discrete wavelet transform (DWT) to decompose the original EEG signals, and the three sub-bands are selected for signal reconstruction. Then, the Co-MixUp method is adopted to solve the problem of data imbalance, and the processed signals are sent to the Inresformer network for seizure information capture and recognition. Finally, discriminant fusion is performed on the results of three-scale EEG sub-signals to achieve final seizure recognition. The proposed network achieves the best accuracy of 100% on Bonn dataset and the average accuracy of 98.03%, sensitivity of 95.65%, and specificity of 98.57% on the long-term CHB-MIT dataset. Compared to the existing DL networks, the proposed method holds significant potential for clinical research and diagnosis applications with competitive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白熊完成签到 ,获得积分10
刚刚
Khalil发布了新的文献求助10
刚刚
一线忧思发布了新的文献求助10
1秒前
leilei发布了新的文献求助10
1秒前
songjiatian完成签到,获得积分10
2秒前
YUNI完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
2秒前
jxuexiong发布了新的文献求助10
3秒前
Owen应助炙热盼兰采纳,获得10
4秒前
二猫完成签到,获得积分10
5秒前
熊姣凤完成签到,获得积分10
5秒前
科研通AI6.1应助YUNI采纳,获得10
6秒前
丰富青文完成签到,获得积分10
6秒前
科研通AI2S应助俊逸寻菡采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
负责的调料汁完成签到,获得积分10
9秒前
贪玩钢铁侠完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
昏睡的嵩应助佰斯特威采纳,获得50
12秒前
一线忧思完成签到,获得积分10
12秒前
David发布了新的文献求助10
12秒前
库三金发布了新的文献求助10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
14秒前
LLP发布了新的文献求助10
14秒前
Lny应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078