A Modified Transformer Network for Seizure Detection Using EEG Signals

计算机科学 模式识别(心理学) 脑电图 人工智能 卷积神经网络 变压器 前馈 人工神经网络 工程类 医学 电压 电气工程 精神科 控制工程
作者
Wenrong Hu,Juan Wang,Feng Li,Daohui Ge,Yuxia Wang,Qingwei Jia,Shasha Yuan
出处
期刊:International Journal of Neural Systems [World Scientific]
被引量:1
标识
DOI:10.1142/s0129065725500030
摘要

Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance. In this study, an enhanced transformer network named Inresformer is proposed for seizure detection, which is combined with Inception and Residual network extracting different scale features of electroencephalography (EEG) signals to enrich the feature representation. In addition, the improved transformer network replaces the existing Feedforward layers with two half-step Feedforward layers to enhance the nonlinear representation of the model. The proposed architecture utilizes discrete wavelet transform (DWT) to decompose the original EEG signals, and the three sub-bands are selected for signal reconstruction. Then, the Co-MixUp method is adopted to solve the problem of data imbalance, and the processed signals are sent to the Inresformer network for seizure information capture and recognition. Finally, discriminant fusion is performed on the results of three-scale EEG sub-signals to achieve final seizure recognition. The proposed network achieves the best accuracy of 100% on Bonn dataset and the average accuracy of 98.03%, sensitivity of 95.65%, and specificity of 98.57% on the long-term CHB-MIT dataset. Compared to the existing DL networks, the proposed method holds significant potential for clinical research and diagnosis applications with competitive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lzh完成签到,获得积分10
1秒前
1秒前
08龙完成签到,获得积分10
1秒前
科研通AI6应助ooooozhubi采纳,获得10
2秒前
善良安荷发布了新的文献求助10
2秒前
yema完成签到,获得积分10
2秒前
小二郎应助电磁炮采纳,获得10
2秒前
2秒前
杜志洪发布了新的文献求助10
2秒前
希望天下0贩的0应助可靠F采纳,获得10
3秒前
chen发布了新的文献求助10
3秒前
Laniakea发布了新的文献求助10
3秒前
3秒前
4秒前
Creep发布了新的文献求助10
4秒前
5秒前
呆萌芙蓉发布了新的文献求助10
5秒前
6秒前
酷波er应助glq采纳,获得10
6秒前
7秒前
7秒前
务实凡灵发布了新的文献求助10
7秒前
汉堡包应助Alice采纳,获得10
8秒前
8秒前
隐形元绿完成签到,获得积分10
9秒前
SciGPT应助善良安荷采纳,获得10
9秒前
Lexcellent发布了新的文献求助10
9秒前
10秒前
善学以致用应助LOVAE采纳,获得10
10秒前
10秒前
CH11完成签到,获得积分10
11秒前
锅锅发布了新的文献求助10
11秒前
边边玥铭发布了新的文献求助10
11秒前
11秒前
11秒前
飘雪完成签到,获得积分10
12秒前
FSX639163发布了新的文献求助10
12秒前
12秒前
隐形元绿发布了新的文献求助20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352815
求助须知:如何正确求助?哪些是违规求助? 4485572
关于积分的说明 13963607
捐赠科研通 4385646
什么是DOI,文献DOI怎么找? 2409546
邀请新用户注册赠送积分活动 1401867
关于科研通互助平台的介绍 1375547