A Modified Transformer Network for Seizure Detection Using EEG Signals

计算机科学 模式识别(心理学) 脑电图 人工智能 卷积神经网络 变压器 前馈 人工神经网络 工程类 医学 电压 电气工程 精神科 控制工程
作者
Wenrong Hu,Juan Wang,Feng Li,Daohui Ge,Yuxia Wang,Qingwei Jia,Shasha Yuan
出处
期刊:International Journal of Neural Systems [World Scientific]
被引量:1
标识
DOI:10.1142/s0129065725500030
摘要

Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance. In this study, an enhanced transformer network named Inresformer is proposed for seizure detection, which is combined with Inception and Residual network extracting different scale features of electroencephalography (EEG) signals to enrich the feature representation. In addition, the improved transformer network replaces the existing Feedforward layers with two half-step Feedforward layers to enhance the nonlinear representation of the model. The proposed architecture utilizes discrete wavelet transform (DWT) to decompose the original EEG signals, and the three sub-bands are selected for signal reconstruction. Then, the Co-MixUp method is adopted to solve the problem of data imbalance, and the processed signals are sent to the Inresformer network for seizure information capture and recognition. Finally, discriminant fusion is performed on the results of three-scale EEG sub-signals to achieve final seizure recognition. The proposed network achieves the best accuracy of 100% on Bonn dataset and the average accuracy of 98.03%, sensitivity of 95.65%, and specificity of 98.57% on the long-term CHB-MIT dataset. Compared to the existing DL networks, the proposed method holds significant potential for clinical research and diagnosis applications with competitive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yue发布了新的文献求助10
1秒前
ytrewq完成签到 ,获得积分10
1秒前
狄振家发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
八段锦完成签到 ,获得积分10
2秒前
2秒前
2秒前
搜集达人应助吃饱再睡采纳,获得10
3秒前
3秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
杳鸢应助Lily采纳,获得10
5秒前
5秒前
mix完成签到,获得积分10
5秒前
暮冬十三完成签到,获得积分10
6秒前
uu给uu的求助进行了留言
6秒前
wlei发布了新的文献求助10
6秒前
7秒前
wanghao发布了新的文献求助10
7秒前
汉堡包应助称心花生采纳,获得10
8秒前
8秒前
崽崽完成签到,获得积分10
8秒前
9秒前
9秒前
情怀应助lxy采纳,获得10
10秒前
11秒前
郑帅完成签到,获得积分10
11秒前
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
liu应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得30
13秒前
13秒前
不吃蛋黄发布了新的文献求助10
13秒前
乐观小之应助科研通管家采纳,获得10
13秒前
13秒前
今后应助科研通管家采纳,获得20
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281