A Modified Transformer Network for Seizure Detection Using EEG Signals

计算机科学 模式识别(心理学) 脑电图 人工智能 卷积神经网络 变压器 前馈 人工神经网络 工程类 医学 电压 电气工程 精神科 控制工程
作者
Wenrong Hu,Juan Wang,Feng Li,Daohui Ge,Yuxia Wang,Qingwei Jia,Shasha Yuan
出处
期刊:International Journal of Neural Systems [World Scientific]
标识
DOI:10.1142/s0129065725500030
摘要

Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance. In this study, an enhanced transformer network named Inresformer is proposed for seizure detection, which is combined with Inception and Residual network extracting different scale features of electroencephalography (EEG) signals to enrich the feature representation. In addition, the improved transformer network replaces the existing Feedforward layers with two half-step Feedforward layers to enhance the nonlinear representation of the model. The proposed architecture utilizes discrete wavelet transform (DWT) to decompose the original EEG signals, and the three sub-bands are selected for signal reconstruction. Then, the Co-MixUp method is adopted to solve the problem of data imbalance, and the processed signals are sent to the Inresformer network for seizure information capture and recognition. Finally, discriminant fusion is performed on the results of three-scale EEG sub-signals to achieve final seizure recognition. The proposed network achieves the best accuracy of 100% on Bonn dataset and the average accuracy of 98.03%, sensitivity of 95.65%, and specificity of 98.57% on the long-term CHB-MIT dataset. Compared to the existing DL networks, the proposed method holds significant potential for clinical research and diagnosis applications with competitive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的觅风完成签到,获得积分10
刚刚
灯火完成签到,获得积分10
1秒前
现代的芹发布了新的文献求助10
2秒前
王珺完成签到,获得积分10
2秒前
李小明发布了新的文献求助10
2秒前
FashionBoy应助嘎嘎嘎嘎采纳,获得10
3秒前
汉堡包应助嘎嘎嘎嘎采纳,获得10
3秒前
英俊的铭应助嘎嘎嘎嘎采纳,获得10
3秒前
所所应助嘎嘎嘎嘎采纳,获得10
3秒前
Hello应助嘎嘎嘎嘎采纳,获得10
3秒前
甜甜玫瑰应助嘎嘎嘎嘎采纳,获得10
3秒前
领导范儿应助嘎嘎嘎嘎采纳,获得10
3秒前
NexusExplorer应助嘎嘎嘎嘎采纳,获得10
3秒前
soar完成签到,获得积分10
3秒前
4秒前
难过的访文完成签到 ,获得积分10
4秒前
HJM完成签到,获得积分10
4秒前
小桑桑发布了新的文献求助10
5秒前
脑洞疼应助旧人旧街采纳,获得10
5秒前
5秒前
6秒前
ruo关闭了ruo文献求助
6秒前
淡定枕头应助了尘采纳,获得10
6秒前
Lucas完成签到,获得积分10
7秒前
Li完成签到,获得积分10
7秒前
Han发布了新的文献求助10
9秒前
9秒前
tommyliu完成签到,获得积分10
10秒前
研友_nEoEy8完成签到,获得积分10
10秒前
慕青应助huang采纳,获得10
10秒前
甜美芹菜完成签到,获得积分10
10秒前
LiLi完成签到,获得积分10
11秒前
孤独的电话完成签到,获得积分10
11秒前
11秒前
11秒前
ding应助嘎嘎嘎嘎采纳,获得10
11秒前
wanci应助嘎嘎嘎嘎采纳,获得10
11秒前
充电宝应助嘎嘎嘎嘎采纳,获得10
11秒前
华仔应助嘎嘎嘎嘎采纳,获得10
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308038
求助须知:如何正确求助?哪些是违规求助? 2941584
关于积分的说明 8504244
捐赠科研通 2616093
什么是DOI,文献DOI怎么找? 1429449
科研通“疑难数据库(出版商)”最低求助积分说明 663767
邀请新用户注册赠送积分活动 648712