A Modified Transformer Network for Seizure Detection Using EEG Signals

计算机科学 模式识别(心理学) 脑电图 人工智能 卷积神经网络 变压器 前馈 人工神经网络 工程类 医学 精神科 电气工程 控制工程 电压
作者
Wenrong Hu,Juan Wang,Feng Li,Daohui Ge,Yuxia Wang,Qingwei Jia,Shasha Yuan
出处
期刊:International Journal of Neural Systems [World Scientific]
标识
DOI:10.1142/s0129065725500030
摘要

Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance. In this study, an enhanced transformer network named Inresformer is proposed for seizure detection, which is combined with Inception and Residual network extracting different scale features of electroencephalography (EEG) signals to enrich the feature representation. In addition, the improved transformer network replaces the existing Feedforward layers with two half-step Feedforward layers to enhance the nonlinear representation of the model. The proposed architecture utilizes discrete wavelet transform (DWT) to decompose the original EEG signals, and the three sub-bands are selected for signal reconstruction. Then, the Co-MixUp method is adopted to solve the problem of data imbalance, and the processed signals are sent to the Inresformer network for seizure information capture and recognition. Finally, discriminant fusion is performed on the results of three-scale EEG sub-signals to achieve final seizure recognition. The proposed network achieves the best accuracy of 100% on Bonn dataset and the average accuracy of 98.03%, sensitivity of 95.65%, and specificity of 98.57% on the long-term CHB-MIT dataset. Compared to the existing DL networks, the proposed method holds significant potential for clinical research and diagnosis applications with competitive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zeke发布了新的文献求助10
刚刚
不爱吃糖发布了新的文献求助10
1秒前
852应助冷傲迎梦采纳,获得10
2秒前
陶醉觅夏发布了新的文献求助200
3秒前
3秒前
exile完成签到,获得积分10
4秒前
朱一龙发布了新的文献求助10
4秒前
mawenting完成签到 ,获得积分10
6秒前
zeke完成签到,获得积分10
7秒前
科研通AI5应助solobang采纳,获得10
8秒前
8秒前
小宇OvO发布了新的文献求助10
9秒前
9秒前
忘羡222完成签到,获得积分10
9秒前
专一发布了新的文献求助10
11秒前
跳跃曼文完成签到,获得积分10
12秒前
干将莫邪完成签到,获得积分10
13秒前
SYLH应助exile采纳,获得10
13秒前
小二郎应助魔幻的从梦采纳,获得10
14秒前
15秒前
雪鸽鸽发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
18秒前
科研通AI5应助朱一龙采纳,获得30
19秒前
SharonDu完成签到 ,获得积分10
20秒前
ayin完成签到,获得积分10
20秒前
21秒前
21秒前
啦啦啦完成签到,获得积分10
21秒前
coffee发布了新的文献求助10
22秒前
22秒前
科研混子发布了新的文献求助10
22秒前
咿咿呀呀发布了新的文献求助10
22秒前
酷酷碧发布了新的文献求助10
24秒前
飘逸宛丝完成签到,获得积分10
25秒前
qzaima发布了新的文献求助10
25秒前
米酒完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824