清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multiparametric Characterization of Focal Cortical Dysplasia Using 3D MR Fingerprinting

皮质发育不良 病理 医学 磁共振成像 放射科
作者
Ting‐Yu Su,Joon Yul Choi,Siyuan Hu,Xiaofeng Wang,Ingmar Blümcke,Katherine Chiprean,Balu Krishnan,Zheng Ding,Ken Sakaie,Hiroatsu Murakami,Andreas V. Alexopoulos,Imad Najm,Stephen E. Jones,Dan Ma,Irène Wang
出处
期刊:Annals of Neurology [Wiley]
卷期号:96 (5): 944-957
标识
DOI:10.1002/ana.27049
摘要

Objective To develop a multiparametric machine‐learning (ML) framework using high‐resolution 3 dimensional (3D) magnetic resonance (MR) fingerprinting (MRF) data for quantitative characterization of focal cortical dysplasia (FCD). Materials We included 119 subjects, 33 patients with focal epilepsy and histopathologically confirmed FCD, 60 age‐ and gender‐matched healthy controls (HCs), and 26 disease controls (DCs). Subjects underwent whole‐brain 3 Tesla MRF acquisition, the reconstruction of which generated T1 and T2 relaxometry maps. A 3D region of interest was manually created for each lesion, and z‐score normalization using HC data was performed. We conducted 2D classification with ensemble models using MRF T1 and T2 mean and standard deviation from gray matter and white matter for FCD versus controls. Subtype classification additionally incorporated entropy and uniformity of MRF metrics, as well as morphometric features from the morphometric analysis program (MAP). We translated 2D results to individual probabilities using the percentage of slices above an adaptive threshold. These probabilities and clinical variables were input into a support vector machine for individual‐level classification. Fivefold cross‐validation was performed and performance metrics were reported using receiver‐operating‐characteristic‐curve analyses. Results FCD versus HC classification yielded mean sensitivity, specificity, and accuracy of 0.945, 0.980, and 0.962, respectively; FCD versus DC classification achieved 0.918, 0.965, and 0.939. In comparison, visual review of the clinical magnetic resonance imaging (MRI) detected 48% (16/33) of the lesions by official radiology report. In the subgroup where both clinical MRI and MAP were negative, the MRF‐ML models correctly distinguished FCD patients from HCs and DCs in 98.3% of cross‐validation trials. Type II versus non‐type‐II classification exhibited mean sensitivity, specificity, and accuracy of 0.835, 0.823, and 0.83, respectively; type IIa versus IIb classification showed 0.85, 0.9, and 0.87. In comparison, the transmantle sign was present in 58% (7/12) of the IIb cases. Interpretation The MRF‐ML framework presented in this study demonstrated strong efficacy in noninvasively classifying FCD from normal cortex and distinguishing FCD subtypes. ANN NEUROL 2024;96:944–957
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
乐仔发布了新的文献求助10
6秒前
落后冬云完成签到 ,获得积分10
9秒前
聪明十三发布了新的文献求助10
9秒前
大生蚝完成签到 ,获得积分10
10秒前
11秒前
艮爚完成签到 ,获得积分10
14秒前
小小王完成签到 ,获得积分10
22秒前
小呵点完成签到 ,获得积分10
25秒前
今后应助聪明十三采纳,获得10
27秒前
啸傲西湖发布了新的文献求助30
45秒前
Ray完成签到 ,获得积分10
50秒前
爆米花应助sy采纳,获得10
51秒前
强子完成签到 ,获得积分10
55秒前
忧伤的慕梅完成签到 ,获得积分10
57秒前
xiaofeixia完成签到 ,获得积分10
57秒前
1分钟前
传奇3应助乐仔采纳,获得10
1分钟前
moonlin完成签到 ,获得积分10
1分钟前
sy发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助baobeikk采纳,获得10
1分钟前
勤恳的雪卉完成签到,获得积分10
1分钟前
Mobitz发布了新的文献求助10
1分钟前
安迪宝刚完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
5433完成签到 ,获得积分10
1分钟前
俊逸的白梦完成签到 ,获得积分0
1分钟前
1分钟前
充电宝应助斩荆披棘采纳,获得10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
乐仔发布了新的文献求助10
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
莫问今生完成签到,获得积分10
1分钟前
科研通AI5应助红色石头采纳,获得30
2分钟前
2分钟前
光亮的自行车完成签到 ,获得积分10
2分钟前
沉默采波完成签到 ,获得积分10
2分钟前
沿途东行完成签到 ,获得积分10
2分钟前
舒心的寻琴完成签到,获得积分10
2分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477518
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110267
捐赠科研通 2760466
什么是DOI,文献DOI怎么找? 1514928
邀请新用户注册赠送积分活动 700486
科研通“疑难数据库(出版商)”最低求助积分说明 699617