Progress and perspective of transition metal layered double hydroxides with oxygen vacancies for enhancing water splitting applications: A review

层状双氢氧化物 催化作用 分解水 析氧 氧气 纳米材料 材料科学 过渡金属 吸附 空位缺陷 解吸 制氢 化学工程 纳米技术 化学物理 化学 无机化学 电化学 物理化学 结晶学 有机化学 光催化 生物化学 电极 工程类
作者
Kai Chen,Dung Van Dao,Sunny Yadav,In-Hwan Lee
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:12 (5): 113773-113773 被引量:11
标识
DOI:10.1016/j.jece.2024.113773
摘要

As an energy-sustainable and environmentally friendly technology, electrochemical water splitting is a highly recognized approach for the production of clean energy and overcoming the energy crisis. However, this method faces a series of challenges, such as low catalyst activity, slow kinetics, poor stability, and high cost. Many reports showed that transition metal layered double hydroxides (TM-LDHs) with unique oxygen vacancy (Ov) defects are a significant new type of candidate nanomaterials to replace precious metal catalysts. This is mainly attributed to their unique physicochemical properties, as well as the tuning of the electronic and lattice structure of the catalyst and optimization of the catalyst surface desorption/adsorption reactions achieved through the introduction of oxygen vacancies, thereby accelerating the oxygen/hydrogen evolution reaction (OER/HER) processes in water splitting. Herein, the preparation methods for engineering oxygen vacancies, and advanced techniques for characterizing oxygen vacancies in catalysts are systematically reviewed, with the aim of clarifying the role of oxygen vacancies in TM-LDHs. The effects of oxygen vacancies on regulating electronic structure, optimizing adsorption energy for intermediates, activating surrounding atomic sites, and generating new active species in TM-LDHs for efficient catalytic HER/OER and decomposition of water are analyzed. More importantly, we discuss the mechanism by which oxygen vacancies promote efficient water splitting in TM-LDHs and outline opportunities and challenges for future development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
在水一方应助忧郁的雨采纳,获得10
刚刚
肚子幽伤发布了新的文献求助10
1秒前
2秒前
丘比特应助王旋烦着呢采纳,获得10
2秒前
2秒前
内向新波发布了新的文献求助30
3秒前
乐乐应助dian采纳,获得10
4秒前
靓丽琳完成签到,获得积分10
4秒前
小新应助简单的银耳汤采纳,获得10
4秒前
Emma完成签到 ,获得积分10
5秒前
Shawna完成签到,获得积分10
5秒前
5秒前
6秒前
风中悟空发布了新的文献求助10
6秒前
7秒前
8秒前
英俊的铭应助大号采纳,获得10
8秒前
邪恶摇粒绒完成签到,获得积分10
9秒前
9秒前
9秒前
优美一寡完成签到,获得积分10
9秒前
丘比特应助yingying采纳,获得10
9秒前
深情安青应助梁馨月采纳,获得10
10秒前
安详怀亦完成签到 ,获得积分10
10秒前
华仔应助搞怪的映菡采纳,获得10
11秒前
LIJIngcan发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助30
11秒前
科研通AI5应助ning采纳,获得10
11秒前
Nini完成签到,获得积分10
12秒前
12秒前
12秒前
Double_N发布了新的文献求助30
12秒前
在秦岭喝豆浆的北极熊完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4951300
求助须知:如何正确求助?哪些是违规求助? 4213988
关于积分的说明 13107085
捐赠科研通 3995738
什么是DOI,文献DOI怎么找? 2187102
邀请新用户注册赠送积分活动 1202366
关于科研通互助平台的介绍 1115447