Progress and perspective of transition metal layered double hydroxides with oxygen vacancies for enhancing water splitting applications: A review

层状双氢氧化物 催化作用 分解水 析氧 氧气 纳米材料 材料科学 过渡金属 吸附 空位缺陷 解吸 制氢 化学工程 纳米技术 化学物理 化学 无机化学 电化学 物理化学 结晶学 生物化学 工程类 有机化学 光催化 电极
作者
Kai Chen,Dung Van Dao,Sunny Yadav,In-Hwan Lee
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:12 (5): 113773-113773 被引量:5
标识
DOI:10.1016/j.jece.2024.113773
摘要

As an energy-sustainable and environmentally friendly technology, electrochemical water splitting is a highly recognized approach for the production of clean energy and overcoming the energy crisis. However, this method faces a series of challenges, such as low catalyst activity, slow kinetics, poor stability, and high cost. Many reports showed that transition metal layered double hydroxides (TM-LDHs) with unique oxygen vacancy (Ov) defects are a significant new type of candidate nanomaterials to replace precious metal catalysts. This is mainly attributed to their unique physicochemical properties, as well as the tuning of the electronic and lattice structure of the catalyst and optimization of the catalyst surface desorption/adsorption reactions achieved through the introduction of oxygen vacancies, thereby accelerating the oxygen/hydrogen evolution reaction (OER/HER) processes in water splitting. Herein, the preparation methods for engineering oxygen vacancies, and advanced techniques for characterizing oxygen vacancies in catalysts are systematically reviewed, with the aim of clarifying the role of oxygen vacancies in TM-LDHs. The effects of oxygen vacancies on regulating electronic structure, optimizing adsorption energy for intermediates, activating surrounding atomic sites, and generating new active species in TM-LDHs for efficient catalytic HER/OER and decomposition of water are analyzed. More importantly, we discuss the mechanism by which oxygen vacancies promote efficient water splitting in TM-LDHs and outline opportunities and challenges for future development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助ky幻影采纳,获得10
3秒前
3秒前
xuanwu发布了新的文献求助10
4秒前
nebula应助饼藏采纳,获得10
6秒前
6秒前
6秒前
6秒前
温伊发布了新的文献求助10
7秒前
搜集达人应助EE采纳,获得10
8秒前
9秒前
FashionBoy应助啦啦啦采纳,获得10
10秒前
今天只做一件事完成签到,获得积分0
10秒前
博修发布了新的文献求助10
11秒前
碧蓝醉蝶发布了新的文献求助10
11秒前
11秒前
zzz_yue关注了科研通微信公众号
11秒前
朱问安完成签到,获得积分10
12秒前
14秒前
哆啦A梦完成签到,获得积分10
15秒前
开放友灵完成签到 ,获得积分20
16秒前
ky幻影发布了新的文献求助10
16秒前
17秒前
李健的小迷弟应助GGBAO采纳,获得10
18秒前
科研通AI2S应助朱问安采纳,获得30
18秒前
哈哈哈完成签到 ,获得积分10
20秒前
YamDaamCaa应助Xiang采纳,获得30
24秒前
科研通AI5应助Xiang采纳,获得10
24秒前
manh123发布了新的文献求助10
24秒前
lyy66964193完成签到,获得积分10
27秒前
在水一方应助SiO2采纳,获得10
27秒前
打打应助ky幻影采纳,获得30
27秒前
请叫我风吹麦浪应助多多采纳,获得10
28秒前
ttt完成签到,获得积分10
28秒前
29秒前
heren发布了新的文献求助10
29秒前
yyx发布了新的文献求助10
30秒前
32秒前
哇咔咔完成签到 ,获得积分10
32秒前
EE发布了新的文献求助10
34秒前
耿强发布了新的文献求助10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578