Obesity in European nursing homes participating in nutritionDay 2016–2021—Prevalence and resident characteristics

医学 肥胖 体质指数 逻辑回归 人口学 超重 老年学 环境卫生 内科学 社会学
作者
I. Galicia Ernst,Isabella Worf,S. Tarantino,M. Hiesmayr,Dorothee Volkert
出处
期刊:Clinical obesity [Wiley]
标识
DOI:10.1111/cob.12697
摘要

Summary The objective of this study is to assess obesity prevalence and characterize European nursing home (NH) residents with obesity comprehensively. Cross‐sectional nutritionDay data from 2016 to 2021. Descriptive characterization of European NH residents ≥65 years with and without obesity. Binomial logistic regression to identify factors associated with obesity. A total of 11 327 residents (73.8% female, 86.4 ± 7.9 years, mean body mass index 25.3 ± 5.4 kg/m 2 ) from 12 countries were analysed. Obesity prevalence was 17.7%, mostly class I (13.0%). Taking ≥5 drugs/day (OR 1.633; 95% confidence intervals 1.358–1.972), female sex (1.591; 1.385–1.832), being bed/chair‐bound (1.357; 1.146–1.606), and having heart/circulation/lung disease (1.276; 1.124–1.448) was associated with increased obesity risk, older age (0.951; 0.944–0.958), mild (0.696; 0.601–0.805) and severe (0.591; 0.488–0.715) dementia, eating less than ¾ of lunch on nutritionDay (0.669; 0.563–0.793), needing assistance for eating (0.686; 0.569–0.825), and being identified by NH staff at risk for (0.312; 0.255–0.380) or with malnutrition (0.392; 0.236–0.619) decreased obesity risk. Almost one in five residents in European NH participating in nutritionDay is affected by obesity. Through a wide exploratory analysis, including data from 12 European countries, we confirmed previous findings and identified additional factors associated with obesity that should be considered in the daily care of affected residents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷昭慧发布了新的文献求助10
1秒前
2秒前
3秒前
爱听歌的梦易完成签到 ,获得积分10
6秒前
挡住所有坏运气888完成签到,获得积分10
6秒前
7秒前
WuCola发布了新的文献求助10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
丘比特应助96采纳,获得10
8秒前
田様应助科研通管家采纳,获得30
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
9秒前
bkagyin应助寻123采纳,获得10
9秒前
郭子给郭子的求助进行了留言
9秒前
思源应助殷昭慧采纳,获得10
9秒前
炙热果汁应助cwj采纳,获得10
10秒前
殷昭慧完成签到,获得积分10
16秒前
17秒前
nuoyefenfei应助活泼的海豚采纳,获得10
17秒前
18秒前
19秒前
20秒前
20秒前
标致之桃完成签到,获得积分10
20秒前
寻123发布了新的文献求助10
21秒前
王易云完成签到,获得积分10
21秒前
去晒月亮完成签到,获得积分10
22秒前
23秒前
dbdhisgsv发布了新的文献求助50
25秒前
25秒前
淡然的新烟完成签到 ,获得积分10
26秒前
WuCola完成签到 ,获得积分10
27秒前
30秒前
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738421
求助须知:如何正确求助?哪些是违规求助? 3281876
关于积分的说明 10026769
捐赠科研通 2998687
什么是DOI,文献DOI怎么找? 1645397
邀请新用户注册赠送积分活动 782757
科研通“疑难数据库(出版商)”最低求助积分说明 749911