Early Warning Scores With and Without Artificial Intelligence

预警得分 喵喵 医学 接收机工作特性 预警系统 急诊医学 回顾性队列研究 内科学 工程类 航空航天工程
作者
Dana P. Edelson,Matthew M. Churpek,Kyle A. Carey,Zhenqiu Lin,Chenxi Huang,Jonathan Siner,Jennifer Johnson,Harlan M. Krumholz,Deborah J. Rhodes
出处
期刊:JAMA network open [American Medical Association]
卷期号:7 (10): e2438986-e2438986 被引量:11
标识
DOI:10.1001/jamanetworkopen.2024.38986
摘要

Importance Early warning decision support tools to identify clinical deterioration in the hospital are widely used, but there is little information on their comparative performance. Objective To compare 3 proprietary artificial intelligence (AI) early warning scores and 3 publicly available simple aggregated weighted scores. Design, Setting, and Participants This retrospective cohort study was performed at 7 hospitals in the Yale New Haven Health System. All consecutive adult medical-surgical ward hospital encounters between March 9, 2019, and November 9, 2023, were included. Exposures Simultaneous Epic Deterioration Index (EDI), Rothman Index (RI), eCARTv5 (eCART), Modified Early Warning Score (MEWS), National Early Warning Score (NEWS), and NEWS2 scores. Main Outcomes and Measures Clinical deterioration, defined as a transfer from ward to intensive care unit or death within 24 hours of an observation. Results Of the 362 926 patient encounters (median patient age, 64 [IQR, 47-77] years; 200 642 [55.3%] female), 16 693 (4.6%) experienced a clinical deterioration event. eCART had the highest area under the receiver operating characteristic curve at 0.895 (95% CI, 0.891-0.900), followed by NEWS2 at 0.831 (95% CI, 0.826-0.836), NEWS at 0.829 (95% CI, 0.824-0.835), RI at 0.828 (95% CI, 0.823-0.834), EDI at 0.808 (95% CI, 0.802-0.812), and MEWS at 0.757 (95% CI, 0.750-0.764). After matching scores at the moderate-risk sensitivity level for a NEWS score of 5, overall positive predictive values (PPVs) ranged from a low of 6.3% (95% CI, 6.1%-6.4%) for an EDI score of 41 to a high of 17.3% (95% CI, 16.9%-17.8%) for an eCART score of 94. Matching scores at the high-risk specificity of a NEWS score of 7 yielded overall PPVs ranging from a low of 14.5% (95% CI, 14.0%-15.2%) for an EDI score of 54 to a high of 23.3% (95% CI, 22.7%-24.2%) for an eCART score of 97. The moderate-risk thresholds provided a median of at least 20 hours of lead time for all the scores. Median lead time at the high-risk threshold was 11 (IQR, 0-69) hours for eCART, 8 (IQR, 0-63) hours for NEWS, 6 (IQR, 0-62) hours for NEWS2, 5 (IQR, 0-56) hours for MEWS, 1 (IQR, 0-39) hour for EDI, and 0 (IQR, 0-42) hours for RI. Conclusions and Relevance In this cohort study of inpatient encounters, eCART outperformed the other AI and non-AI scores, identifying more deteriorating patients with fewer false alarms and sufficient time to intervene. NEWS, a non-AI, publicly available early warning score, significantly outperformed EDI. Given the wide variation in accuracy, additional transparency and oversight of early warning tools may be warranted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
yy发布了新的文献求助10
1秒前
bkagyin应助finn采纳,获得10
1秒前
1秒前
无花果应助催化民工采纳,获得10
2秒前
3秒前
无限尔云完成签到,获得积分10
3秒前
lyq发布了新的文献求助10
4秒前
猪猪hero发布了新的文献求助10
4秒前
4秒前
大模型应助胖肉肉采纳,获得10
4秒前
Muzz发布了新的文献求助20
4秒前
李健应助犹豫的笑旋采纳,获得10
5秒前
5秒前
5秒前
哈基米发布了新的文献求助10
5秒前
5秒前
haru完成签到 ,获得积分10
6秒前
蛇從革应助好晒采纳,获得30
6秒前
6秒前
happyboy2008发布了新的文献求助10
7秒前
好学的泷泷完成签到 ,获得积分10
7秒前
田...发布了新的文献求助10
8秒前
阿易关注了科研通微信公众号
8秒前
9秒前
DUKE完成签到,获得积分10
9秒前
林一发布了新的文献求助10
9秒前
超帅远望发布了新的文献求助10
9秒前
9秒前
寒冷的妙梦完成签到,获得积分10
10秒前
10秒前
完美世界应助落后从阳采纳,获得10
10秒前
李健的小迷弟应助罗洛洛采纳,获得10
11秒前
求求发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助30
13秒前
keyantong用户完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
finn发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750276
求助须知:如何正确求助?哪些是违规求助? 5463221
关于积分的说明 15366303
捐赠科研通 4889428
什么是DOI,文献DOI怎么找? 2629165
邀请新用户注册赠送积分活动 1577481
关于科研通互助平台的介绍 1533992