Coprocessing of F4TCNQ Dopant and Poly(3-alkylthiophene) in a Two-Dimensional Bilayer

掺杂剂 双层 材料科学 兴奋剂 基质(水族馆) 液晶 聚合物 烷基 化学工程 纹理(宇宙学) 纳米技术 有机化学 化学 复合材料 光电子学 人工智能 工程类 地质学 图像(数学) 海洋学 生物化学 计算机科学
作者
Hugo Fernández,Alae El Haitami,S. Spagnoli,Philippe Fontaine,Sophie Cantin
出处
期刊:Macromolecules [American Chemical Society]
卷期号:57 (15): 7184-7196
标识
DOI:10.1021/acs.macromol.4c00994
摘要

Doping organic semiconductors to modify and enhance their electronic properties is a crucial step in the development of these devices. In this study, a liquid surface is used to organize poly(3-hexylthiophene) (P3HT) in a homogeneous highly crystalline nanometer-thick bilayer that can subsequently be transferred onto a chosen solid substrate without impacting its structure. Coprocessing of various amounts of F4TCNQ as dopant and P3HT was investigated to obtain, for the first time to our knowledge, an F4TCNQ-doped polymer layer preorganized on a liquid substrate. The optical and electrical properties, as well as the structure and morphology of the doped layer, were determined on liquid and solid substrates using a large range of experimental techniques adapted to each substrate. Our findings revealed that optimal doping is obtained when the molar ratio of the F4TCNQ: thiophene unit is 1:4. A 2D-organized F4TCNQ-doped P3HT bilayer with an edge-on orientation was formed on both substrates. The bilayer thickness is close to 4 nm, and the F4TCNQ dopant was found to be intercalated within the alkyl side-chain interlayer. In addition, two in-plane crystalline structures were observed to coexist, the major one corresponding to F4TCNQ-doped P3HT and the minority one to neutral polymer. The in-plane lattice associated with each phase was completely determined, emphasizing the high order achieved through such a coprocessing method on a liquid substrate compared with usual drop-casting techniques. This resulted in the bilayer in-plane electronic conductivity of about 0.1 S/cm reaching 5 S/cm for the 5-bilayer film due to the contribution of out-of-plane charge transport.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庐陵流川枫完成签到,获得积分10
1秒前
Orange应助Xiaoyan采纳,获得10
2秒前
岑晓冰完成签到 ,获得积分10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
zcl应助科研通管家采纳,获得30
3秒前
烟花应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助hudiefeifei306采纳,获得10
4秒前
pcr163应助科研通管家采纳,获得100
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
充电宝应助难过的翠桃采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
行毅文发布了新的文献求助10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
浪子应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
wangyamei发布了新的文献求助10
5秒前
5秒前
暮色给暮色的求助进行了留言
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4947452
求助须知:如何正确求助?哪些是违规求助? 4211229
关于积分的说明 13093565
捐赠科研通 3992434
什么是DOI,文献DOI怎么找? 2185471
邀请新用户注册赠送积分活动 1200855
关于科研通互助平台的介绍 1114351