Personalized Aesthetic Assessment: Integrating Fuzzy Logic and Color Preferences

模糊逻辑 偏爱 计算机科学 人工智能 轻巧 计算机视觉 数学 统计
作者
Ayana Adilova,Pakizar Shamoi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 97646-97663
标识
DOI:10.1109/access.2024.3427706
摘要

The analysis of aesthetic assessment is a complex and subjective task that has attracted researchers for a long time. The subjective nature of aesthetic preferences presents a significant challenge in defining and quantifying what makes images visually appealing. The current paper addresses this gap by introducing a novel methodology for quantifying and predicting aesthetic preferences in the case of interior design images. Our study combines fuzzy logic with image processing techniques. Firstly, a dataset of interior design images was collected from social media platforms, focusing on essential visual attributes such as color harmony, lightness, and complexity. Then, these features were integrated using a weighted average to compute a general aesthetic score. Our methodology considers personal color tastes when determining the overall aesthetic appeal. Initially, user feedback was collected on primary colors such as red, brown, and others to gauge their preferences. Subsequently, the image's five most prevalent colors were analyzed to determine the preferred color scheme based on pixel count. The color scheme preference and the aesthetic score are then passed as inputs to the fuzzy inference system to calculate an overall preference score. This score represents a comprehensive measure of the user's preference for a particular interior design, considering their color choices and general aesthetic appeal. The Two-Alternative Forced Choice (2AFC) method validated the methodology, resulting in a notable hit rate of 0.68. This study can help in fields such as art, design, advertising, or multimedia content creation, where aesthetic analysis and preference prediction are crucial. In the case of interior design, this study can help designers and professionals better understand and meet people's preferences, especially in a world that relies heavily on digital media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虾仁发布了新的文献求助10
1秒前
1秒前
sx发布了新的文献求助10
1秒前
1秒前
陈尹蓝完成签到 ,获得积分10
1秒前
猪猪完成签到,获得积分20
1秒前
2秒前
luoyutian完成签到,获得积分10
2秒前
Harlotte驳回了Mars应助
2秒前
欣慰硬币发布了新的文献求助30
2秒前
2秒前
Owen应助心花怒放采纳,获得10
2秒前
kingwill应助DrYang采纳,获得20
2秒前
正直冰露发布了新的文献求助10
3秒前
Jenny应助小满采纳,获得10
3秒前
kangkang发布了新的文献求助10
3秒前
3秒前
3秒前
冷傲的嵩完成签到,获得积分10
4秒前
青山完成签到,获得积分20
4秒前
4秒前
火星上的听云完成签到,获得积分10
5秒前
鲤鱼寻菡完成签到,获得积分10
5秒前
5秒前
222完成签到,获得积分20
5秒前
6秒前
甘牡娟完成签到,获得积分10
6秒前
yigu发布了新的文献求助10
6秒前
惠惠完成签到 ,获得积分10
6秒前
lkc发布了新的文献求助10
6秒前
情怀应助朴素的清采纳,获得10
7秒前
晚安完成签到,获得积分10
7秒前
山丘完成签到,获得积分10
8秒前
DrYang完成签到,获得积分10
8秒前
科研通AI5应助微笑采纳,获得10
8秒前
9秒前
务实盼海完成签到 ,获得积分20
9秒前
小张张完成签到,获得积分10
9秒前
YAN完成签到,获得积分10
9秒前
隐形曼青应助卑以自牧采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762