Uncovering corporate greenwashing: a predictive model based on Chinese heavy-pollution industries

绿色洗涤 业务 污染 环境科学 自然资源经济学 经济 企业社会责任 政治学 公共关系 生态学 生物
作者
Qiang Li,Zichun He,H. Li
出处
期刊:Sustainability Accounting, Management and Policy Journal [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/sampj-11-2023-0813
摘要

Purpose As the global emphasis on environmental consciousness intensifies, many corporations claim to be environmentally responsible. However, some merely partake in “greenwashing” – a facade of eco-responsibility. Such deceptive behavior is especially prevalent in Chinese heavy-pollution industries. To counter these deceptive practices, this study aims to use machine learning (ML) techniques to develop predictive models against corporate greenwashing, thus facilitating the sustainable development of corporations. Design/methodology/approach This study develops effective predictive models for greenwashing by integrating multifaceted data sets, which include corporate external, organizational and managerial characteristics, and using a range of ML algorithms, namely, linear regression, random forest, K-nearest neighbors, support vector machines and artificial neural network. Findings The proposed predictive models register an improvement of over 20% in prediction accuracy compared to the benchmark value, furnishing stakeholders with a robust tool to challenge corporate greenwashing behaviors. Further analysis of feature importance, industry-specific predictions and real-world validation enhances the model’s interpretability and its practical applications across different domains. Practical implications This research introduces an innovative ML-based model designed to predict greenwashing activities within Chinese heavy-pollution sectors. It holds potential for application in other emerging economies, serving as a practical tool for both academics and practitioners. Social implications The findings offer insights for crafting informed, data-driven policies to curb greenwashing and promote corporate responsibility, transparency and sustainable development. Originality/value While prior research mainly concentrated on the factors influencing greenwashing behavior, this study takes a proactive approach. It aims to forecast the extent of corporate greenwashing by using a range of multi-dimensional variables, thus providing enhanced value to stakeholders. To the best of the authors’ knowledge, this is the first study introducing ML-based models designed to predict a company’s level of greenwashing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醒了没醒醒完成签到,获得积分10
1秒前
3秒前
jessica发布了新的文献求助10
3秒前
思源应助英俊的晓槐采纳,获得10
3秒前
4秒前
J.完成签到,获得积分10
5秒前
大气的乌冬面完成签到,获得积分10
6秒前
冰冰发布了新的文献求助30
7秒前
呀呀呀发布了新的文献求助10
7秒前
8秒前
9秒前
M27完成签到,获得积分10
9秒前
几点睡觉发布了新的文献求助10
11秒前
11秒前
李健应助玩命的紫南采纳,获得10
12秒前
jessica完成签到,获得积分10
13秒前
小伍发布了新的文献求助200
14秒前
14秒前
15秒前
zhaoytmmu发布了新的文献求助20
16秒前
16秒前
xinyue发布了新的文献求助10
16秒前
细腻的秋天完成签到 ,获得积分10
17秒前
骑着火车撵火箭完成签到,获得积分10
17秒前
17秒前
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
学术通zzz应助科研通管家采纳,获得20
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
李家奇发布了新的文献求助10
21秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Characterization of Fusarium solani associated with tobacco (Nicotiana tabacum L.) root rot in Henan, China 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339969
求助须知:如何正确求助?哪些是违规求助? 2968030
关于积分的说明 8631841
捐赠科研通 2647552
什么是DOI,文献DOI怎么找? 1449682
科研通“疑难数据库(出版商)”最低求助积分说明 671492
邀请新用户注册赠送积分活动 660495