Optimal Design of Assembling Robot Considering Different Limb Topologies and Layouts

网络拓扑 机器人 计算机科学 工程类 仿生学 拓扑(电路) 工程制图 模拟 人工智能 计算机网络 电气工程
作者
Binbin Lian,Jinhua Guo,Zhiyuan He,Yimin Song
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:147 (1) 被引量:1
标识
DOI:10.1115/1.4065999
摘要

Abstract A class of 5 degree-of-freedom (DoF) hybrid robots consisting of one translational and two rotational (1T2R) parallel module and 2 T serial module is presented for assembling in the aircraft cabin. The 1T2R parallel modules are with three limb topologies (PRS, RRS, and internal closed loop) and two layouts (symmetrical and “T” shape). Herein, P, R, and S denote prismatic, rotational, and spherical joints. This article presents the multi-objective optimization of the hybrid robot regarding different limb topology, limb layout, and corresponding dimensions as design variables. Considering demands from the in-cabin assembling, kinematic, linear stiffness along z-axis and total mass of the robot are the objectives. The Pareto fronts and cooperative equilibrium point (CEP) indicate that the robot with 3-PRS and 3-RRS parallel module have better performances than the one with internal closed loop. The overall performances of robot with symmetrical layout are superior than the one with “T” shape layout. In addition, two optimization methods are compared. One is to separately optimize six robots with specific topology and layout. The other is to optimize all design variables in a model. It is found that six robots have their own performance zones. Therefore, final optimums of two methods are close to each other. But optimization in one model is able to eliminate unfeasible topologies in the early stage of searching and thus is more efficient. Optimal module is 3-PRS with symmetrical layout. Experiments on the physical prototype validate performances of the optimal robot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
zhengzheng发布了新的文献求助10
6秒前
bkagyin应助devilfish13采纳,获得10
7秒前
8秒前
酒剑仙完成签到,获得积分10
9秒前
shuyunlou完成签到,获得积分10
9秒前
9秒前
9秒前
mfewf完成签到,获得积分10
10秒前
11秒前
共享精神应助怡然的向南采纳,获得10
12秒前
韭黄完成签到,获得积分20
12秒前
大个应助prof.zhang采纳,获得10
12秒前
14秒前
15秒前
半柚发布了新的文献求助10
16秒前
xingmeng完成签到,获得积分10
16秒前
16秒前
17秒前
虚拟的南烟关注了科研通微信公众号
17秒前
guohuan发布了新的文献求助10
19秒前
彭于晏发布了新的文献求助20
22秒前
努力独行者完成签到,获得积分10
22秒前
26秒前
28秒前
28秒前
30秒前
prof.zhang发布了新的文献求助10
33秒前
Wmin发布了新的文献求助20
33秒前
33秒前
张志远发布了新的文献求助10
33秒前
33秒前
34秒前
raycee发布了新的文献求助10
35秒前
36秒前
36秒前
xiaolu发布了新的文献求助10
37秒前
swalee99完成签到 ,获得积分10
37秒前
骨科发布了新的文献求助10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736328
求助须知:如何正确求助?哪些是违规求助? 3280123
关于积分的说明 10018861
捐赠科研通 2996771
什么是DOI,文献DOI怎么找? 1644279
邀请新用户注册赠送积分活动 781872
科研通“疑难数据库(出版商)”最低求助积分说明 749554