模态(人机交互)
计算机科学
人工智能
特征(语言学)
医学影像学
计算机视觉
图像配准
特征提取
模式识别(心理学)
图像(数学)
哲学
语言学
作者
Jun Li,Tongkun Su,Baoliang Zhao,Faqin Lv,Qiong Wang,Nassir Navab,Ying Hu,Zhongliang Jiang
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-1
被引量:2
标识
DOI:10.1109/tmi.2024.3424978
摘要
Automatic report generation has arisen as a significant research area in computer-aided diagnosis, aiming to alleviate the burden on clinicians by generating reports automatically based on medical images. In this work, we propose a novel framework for automatic ultrasound report generation, leveraging a combination of unsupervised and supervised learning methods to aid the report generation process. Our framework incorporates unsupervised learning methods to extract potential knowledge from ultrasound text reports, serving as the prior information to guide the model in aligning visual and textual features, thereby addressing the challenge of feature discrepancy. Additionally, we design a global semantic comparison mechanism to enhance the performance of generating more comprehensive and accurate medical reports. To enable the implementation of ultrasound report generation, we constructed three large-scale ultrasound image-text datasets from different organs for training and validation purposes. Extensive evaluations with other state-of-the-art approaches exhibit its superior performance across all three datasets. Code and dataset are valuable at this link.
科研通智能强力驱动
Strongly Powered by AbleSci AI