亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficiency of oral keratinized gingiva detection and measurement based on convolutional neural network

卷积神经网络 基本事实 分割 计算机科学 人工智能 差异(会计) 交叉口(航空) 深度学习 人工神经网络 模式识别(心理学) 牙科 医学 会计 工程类 业务 航空航天工程
作者
Gokce Aykol‐Sahin,Özgün Yücel,Nihal Eraydin,Gonca Çayır Keleş,Umran Unlu,Ülkü Başer
出处
期刊:Journal of Periodontology [Wiley]
被引量:1
标识
DOI:10.1002/jper.24-0151
摘要

Abstract Background With recent advances in artificial intelligence, the use of this technology has begun to facilitate comprehensive tissue evaluation and planning of interventions. This study aimed to assess different convolutional neural networks (CNN) in deep learning algorithms to detect keratinized gingiva based on intraoral photos and evaluate the ability of networks to measure keratinized gingiva width. Methods Six hundred of 1200 photographs taken before and after applying a disclosing agent were used to compare the neural networks in segmenting the keratinized gingiva. Segmentation performances of networks were evaluated using accuracy, intersection over union, and F1 score. Keratinized gingiva width from a reference point was measured from ground truth images and compared with the measurements of clinicians and the DeepLab image that was generated from the ResNet50 model. The effect of measurement operators, phenotype, and jaw on differences in measurements was evaluated by three‐factor mixed‐design analysis of variance (ANOVA). Results Among the compared networks, ResNet50 distinguished keratinized gingiva at the highest accuracy rate of 91.4%. The measurements between deep learning and clinicians were in excellent agreement according to jaw and phenotype. When analyzing the influence of the measurement operators, phenotype, and jaw on the measurements performed according to the ground truth, there were statistically significant differences in measurement operators and jaw ( p < 0.05). Conclusions Automated keratinized gingiva segmentation with the ResNet50 model might be a feasible method for assisting professionals. The measurement results promise a potentially high performance of the model as it requires less time and experience. PLAIN LANGUAGE SUMMARY With recent advances in artificial intelligence (AI), it is now possible to use this technology to evaluate tissues and plan medical procedures thoroughly. This study focused on testing different AI models, specifically CNN, to identify and measure a specific type of gum tissue called keratinized gingiva using photos taken inside the mouth. Out of 1200 photos, 600 were used in the study to compare the performance of different CNN in identifying gingival tissue. The accuracy and effectiveness of these models were measured and compared to human clinician ratings. The study found that the ResNet50 model was the most accurate, correctly identifying gingival tissue 91.4% of the time. When the AI model and clinicians' measurements of gum tissue width were compared, the results were very similar, especially when accounting for different jaws and gum structures. The study also analyzed the effect of various factors on the measurements and found significant differences based on who took the measurements and jaw type. In conclusion, using the ResNet50 model to identify and measure gum tissue automatically could be a practical tool for dental professionals, saving time and requiring less expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
28秒前
Iridescent完成签到 ,获得积分10
1分钟前
1分钟前
manfullmoon完成签到,获得积分0
1分钟前
MS903完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研菜鸡采纳,获得30
2分钟前
CJW完成签到 ,获得积分10
2分钟前
Chloe完成签到,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
pegasus0802完成签到,获得积分10
2分钟前
CodeCraft应助安逸1采纳,获得10
2分钟前
linkman发布了新的文献求助150
3分钟前
3分钟前
希望早睡发布了新的文献求助10
3分钟前
3分钟前
linkman发布了新的文献求助10
3分钟前
研友_VZG7GZ应助希望早睡采纳,获得10
3分钟前
3分钟前
mumu发布了新的文献求助10
3分钟前
3分钟前
wzgkeyantong发布了新的文献求助10
3分钟前
科研通AI5应助当里个当采纳,获得10
4分钟前
Yixin发布了新的文献求助20
4分钟前
4分钟前
当里个当发布了新的文献求助10
4分钟前
4分钟前
美丽的冰枫完成签到,获得积分10
4分钟前
linkman发布了新的文献求助30
5分钟前
zly完成签到 ,获得积分10
5分钟前
阔达白凡完成签到,获得积分10
5分钟前
xx完成签到 ,获得积分10
5分钟前
义气的断秋完成签到,获得积分10
5分钟前
5分钟前
mumu发布了新的文献求助10
5分钟前
闪闪的炳完成签到 ,获得积分10
5分钟前
maher完成签到,获得积分10
6分钟前
爆米花应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
zsmj23完成签到 ,获得积分0
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4540828
求助须知:如何正确求助?哪些是违规求助? 3974608
关于积分的说明 12310700
捐赠科研通 3641823
什么是DOI,文献DOI怎么找? 2005438
邀请新用户注册赠送积分活动 1040826
科研通“疑难数据库(出版商)”最低求助积分说明 930066