清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Efficiency of oral keratinized gingiva detection and measurement based on convolutional neural network

卷积神经网络 基本事实 分割 计算机科学 人工智能 差异(会计) 交叉口(航空) 深度学习 人工神经网络 模式识别(心理学) 牙科 医学 会计 工程类 业务 航空航天工程
作者
Gokce Aykol‐Sahin,Özgün Yücel,Nihal Eraydin,Gonca Çayır Keleş,Umran Unlu,Ülkü Başer
出处
期刊:Journal of Periodontology [Wiley]
被引量:1
标识
DOI:10.1002/jper.24-0151
摘要

Abstract Background With recent advances in artificial intelligence, the use of this technology has begun to facilitate comprehensive tissue evaluation and planning of interventions. This study aimed to assess different convolutional neural networks (CNN) in deep learning algorithms to detect keratinized gingiva based on intraoral photos and evaluate the ability of networks to measure keratinized gingiva width. Methods Six hundred of 1200 photographs taken before and after applying a disclosing agent were used to compare the neural networks in segmenting the keratinized gingiva. Segmentation performances of networks were evaluated using accuracy, intersection over union, and F1 score. Keratinized gingiva width from a reference point was measured from ground truth images and compared with the measurements of clinicians and the DeepLab image that was generated from the ResNet50 model. The effect of measurement operators, phenotype, and jaw on differences in measurements was evaluated by three‐factor mixed‐design analysis of variance (ANOVA). Results Among the compared networks, ResNet50 distinguished keratinized gingiva at the highest accuracy rate of 91.4%. The measurements between deep learning and clinicians were in excellent agreement according to jaw and phenotype. When analyzing the influence of the measurement operators, phenotype, and jaw on the measurements performed according to the ground truth, there were statistically significant differences in measurement operators and jaw ( p < 0.05). Conclusions Automated keratinized gingiva segmentation with the ResNet50 model might be a feasible method for assisting professionals. The measurement results promise a potentially high performance of the model as it requires less time and experience. PLAIN LANGUAGE SUMMARY With recent advances in artificial intelligence (AI), it is now possible to use this technology to evaluate tissues and plan medical procedures thoroughly. This study focused on testing different AI models, specifically CNN, to identify and measure a specific type of gum tissue called keratinized gingiva using photos taken inside the mouth. Out of 1200 photos, 600 were used in the study to compare the performance of different CNN in identifying gingival tissue. The accuracy and effectiveness of these models were measured and compared to human clinician ratings. The study found that the ResNet50 model was the most accurate, correctly identifying gingival tissue 91.4% of the time. When the AI model and clinicians' measurements of gum tissue width were compared, the results were very similar, especially when accounting for different jaws and gum structures. The study also analyzed the effect of various factors on the measurements and found significant differences based on who took the measurements and jaw type. In conclusion, using the ResNet50 model to identify and measure gum tissue automatically could be a practical tool for dental professionals, saving time and requiring less expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣欣完成签到,获得积分10
6秒前
小蘑菇应助mia采纳,获得10
7秒前
科目三应助lanxinge采纳,获得10
32秒前
Barid完成签到,获得积分10
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
zhanlang完成签到 ,获得积分10
1分钟前
谨慎的元冬完成签到 ,获得积分10
1分钟前
爱上阳光的鱼完成签到 ,获得积分10
1分钟前
牙瓜完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
1分钟前
mia发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lanxinge发布了新的文献求助10
1分钟前
大模型应助lanxinge采纳,获得10
2分钟前
ldjldj_2004完成签到 ,获得积分10
2分钟前
sysi完成签到 ,获得积分10
2分钟前
WenJun完成签到,获得积分10
2分钟前
Sunny完成签到,获得积分10
2分钟前
缥缈完成签到 ,获得积分10
3分钟前
3分钟前
lanxinge发布了新的文献求助10
3分钟前
3分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
comeanddo应助科研通管家采纳,获得10
3分钟前
3分钟前
酷波er应助lanxinge采纳,获得10
3分钟前
huanghe完成签到,获得积分10
4分钟前
4分钟前
lanxinge发布了新的文献求助10
4分钟前
HiDasiy完成签到 ,获得积分10
4分钟前
yq发布了新的文献求助10
5分钟前
深情安青应助lanxinge采纳,获得10
5分钟前
mia完成签到,获得积分10
5分钟前
沙海沉戈完成签到,获得积分0
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746201
求助须知:如何正确求助?哪些是违规求助? 3289015
关于积分的说明 10061744
捐赠科研通 3005280
什么是DOI,文献DOI怎么找? 1650186
邀请新用户注册赠送积分活动 785753
科研通“疑难数据库(出版商)”最低求助积分说明 751258