Efficiency of oral keratinized gingiva detection and measurement based on convolutional neural network

卷积神经网络 基本事实 分割 计算机科学 人工智能 差异(会计) 交叉口(航空) 深度学习 人工神经网络 模式识别(心理学) 牙科 医学 会计 工程类 业务 航空航天工程
作者
Gokce Aykol‐Sahin,Özgün Yücel,Nihal Eraydin,Gonca Çayır Keleș,Umran Unlu,Ülkü Başer
出处
期刊:Journal of Periodontology [Wiley]
标识
DOI:10.1002/jper.24-0151
摘要

Abstract Background With recent advances in artificial intelligence, the use of this technology has begun to facilitate comprehensive tissue evaluation and planning of interventions. This study aimed to assess different convolutional neural networks (CNN) in deep learning algorithms to detect keratinized gingiva based on intraoral photos and evaluate the ability of networks to measure keratinized gingiva width. Methods Six hundred of 1200 photographs taken before and after applying a disclosing agent were used to compare the neural networks in segmenting the keratinized gingiva. Segmentation performances of networks were evaluated using accuracy, intersection over union, and F1 score. Keratinized gingiva width from a reference point was measured from ground truth images and compared with the measurements of clinicians and the DeepLab image that was generated from the ResNet50 model. The effect of measurement operators, phenotype, and jaw on differences in measurements was evaluated by three‐factor mixed‐design analysis of variance (ANOVA). Results Among the compared networks, ResNet50 distinguished keratinized gingiva at the highest accuracy rate of 91.4%. The measurements between deep learning and clinicians were in excellent agreement according to jaw and phenotype. When analyzing the influence of the measurement operators, phenotype, and jaw on the measurements performed according to the ground truth, there were statistically significant differences in measurement operators and jaw ( p < 0.05). Conclusions Automated keratinized gingiva segmentation with the ResNet50 model might be a feasible method for assisting professionals. The measurement results promise a potentially high performance of the model as it requires less time and experience. PLAIN LANGUAGE SUMMARY With recent advances in artificial intelligence (AI), it is now possible to use this technology to evaluate tissues and plan medical procedures thoroughly. This study focused on testing different AI models, specifically CNN, to identify and measure a specific type of gum tissue called keratinized gingiva using photos taken inside the mouth. Out of 1200 photos, 600 were used in the study to compare the performance of different CNN in identifying gingival tissue. The accuracy and effectiveness of these models were measured and compared to human clinician ratings. The study found that the ResNet50 model was the most accurate, correctly identifying gingival tissue 91.4% of the time. When the AI model and clinicians' measurements of gum tissue width were compared, the results were very similar, especially when accounting for different jaws and gum structures. The study also analyzed the effect of various factors on the measurements and found significant differences based on who took the measurements and jaw type. In conclusion, using the ResNet50 model to identify and measure gum tissue automatically could be a practical tool for dental professionals, saving time and requiring less expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xsen完成签到 ,获得积分10
刚刚
细心的语蓉完成签到,获得积分10
3秒前
PM2555完成签到 ,获得积分10
3秒前
心心完成签到 ,获得积分10
6秒前
大力水手完成签到,获得积分10
9秒前
红领巾klj完成签到 ,获得积分10
13秒前
HRZ完成签到 ,获得积分10
14秒前
北城完成签到 ,获得积分10
16秒前
康复小白完成签到 ,获得积分10
29秒前
研友_nVWP2Z完成签到 ,获得积分10
33秒前
小事完成签到 ,获得积分10
44秒前
651完成签到 ,获得积分10
48秒前
LuciusHe完成签到,获得积分10
50秒前
小康学弟完成签到 ,获得积分10
51秒前
ljpsjdsm完成签到 ,获得积分10
52秒前
疯狂的迪子完成签到 ,获得积分10
55秒前
HCKACECE完成签到 ,获得积分10
59秒前
lilili完成签到,获得积分10
1分钟前
小粒橙完成签到 ,获得积分10
1分钟前
啊啊啊啊宇呀完成签到 ,获得积分10
1分钟前
1分钟前
xiaofeiyan完成签到 ,获得积分10
1分钟前
空洛完成签到 ,获得积分10
1分钟前
小燕子完成签到 ,获得积分10
1分钟前
cherlia发布了新的文献求助10
1分钟前
聪慧语山完成签到 ,获得积分10
1分钟前
Boris完成签到 ,获得积分10
1分钟前
绿色心情完成签到 ,获得积分10
1分钟前
yi完成签到,获得积分10
1分钟前
xiaoxiaoxingqiu完成签到 ,获得积分10
1分钟前
ymxlcfc完成签到 ,获得积分10
1分钟前
坚强的广山完成签到,获得积分0
1分钟前
粗犷的灵松完成签到 ,获得积分10
1分钟前
楚奇完成签到,获得积分10
1分钟前
keyanzhang完成签到 ,获得积分0
1分钟前
蔚111完成签到 ,获得积分10
1分钟前
i2stay完成签到,获得积分10
1分钟前
武大帝77完成签到 ,获得积分10
1分钟前
weng完成签到,获得积分10
2分钟前
岁岁完成签到 ,获得积分10
2分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167235
求助须知:如何正确求助?哪些是违规求助? 2818724
关于积分的说明 7922021
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443