Fusion of Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy for Mineral Identification Based on Machine Learning

激光诱导击穿光谱 拉曼光谱 光谱学 融合 鉴定(生物学) 矿物 材料科学 化学 分析化学(期刊) 光学 物理 环境化学 生物 冶金 植物 语言学 哲学 量子力学
作者
Yujia Dai,Ziyuan Liu,Shangyong Zhao
出处
期刊:Molecules [MDPI AG]
卷期号:29 (14): 3317-3317 被引量:1
标识
DOI:10.3390/molecules29143317
摘要

Rapid and reliable identification of mineral species is a challenging but crucial task with promising application prospects in mineralogy, metallurgy, and geology. Spectroscopic techniques such as laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy (RS) efficiently capture the elemental composition and structural information of minerals, making them a potential tool for in situ and real-time analysis of minerals. This study introduces an integrated LIBS-RS system and the fusion of LIBS and RS spectra coupled with machine learning to classify six different types of natural mineral. In order to visualize the separability of different mineral species clearly, the spectral data were projected into low-dimensional space through t-distributed stochastic neighbor embedding (t-SNE). Additionally, the Fisher score (FS) was used to identify important variables that contribute to the data classification, and the corresponding chemical elements and molecular bonds were then interpreted. The between-minerals difference in the feature spectral intensity of LIBS and RS variables could also be observed. After the minerals spectra were pre-processed, the relationship between spectral intensity and the mineral category was modeled using machine learning methods, including partial least squares–discriminant analysis (PLS-DA) and kernel extreme learning machine (K-ELM). The results show that K-ELM and PLS-DA based on the fusion LIBS-RS data achieved the highest accuracy of 98.4%. These findings demonstrate the feasibility of the integrated LIBS-RS system combined with machine learning for the fast and reliable classification of minerals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胖发布了新的文献求助10
刚刚
乐乐应助Lixian采纳,获得10
1秒前
yy发布了新的文献求助10
1秒前
2秒前
meiguang完成签到,获得积分10
2秒前
尹冰露完成签到,获得积分10
3秒前
3秒前
风和日li完成签到,获得积分0
3秒前
赘婿应助天上人间采纳,获得10
4秒前
4秒前
4秒前
王其超完成签到,获得积分10
4秒前
香蕉觅云应助合适的笑白采纳,获得10
5秒前
5秒前
冰留完成签到 ,获得积分10
5秒前
cebr发布了新的文献求助10
6秒前
柯柯完成签到,获得积分10
7秒前
chen完成签到,获得积分10
7秒前
赟yun完成签到,获得积分0
7秒前
7秒前
贺儿完成签到 ,获得积分10
8秒前
9秒前
Jasen发布了新的文献求助10
9秒前
独特乘云发布了新的文献求助10
9秒前
kk发布了新的文献求助10
10秒前
大个应助wisteety采纳,获得10
11秒前
番茄完成签到,获得积分10
11秒前
11秒前
zzzlk发布了新的文献求助10
11秒前
SciGPT应助hx采纳,获得10
11秒前
12秒前
12秒前
13秒前
13秒前
myheat完成签到,获得积分10
13秒前
niu完成签到 ,获得积分10
13秒前
模糊中正应助kk采纳,获得20
13秒前
杰奥发布了新的文献求助10
14秒前
14秒前
wanci应助独特乘云采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053