Protein stability models fail to capture epistatic interactions of double point mutations

上位性 点突变 突变 理论(学习稳定性) 水准点(测量) 计算生物学 计算机科学 生物 遗传学 机器学习 基因 大地测量学 地理
作者
Henry Dieckhaus,Brian Kuhlman
标识
DOI:10.1101/2024.08.20.608844
摘要

There is strong interest in accurate methods for predicting changes in protein stability resulting from amino acid mutations to the protein sequence. Recombinant proteins must often be stabilized to be used as therapeutics or reagents, and destabilizing mutations are implicated in a variety of diseases. Due to increased data availability and improved modeling techniques, recent studies have shown advancements in predicting changes in protein stability when a single point mutation is made. Less focus has been directed toward predicting changes in protein stability when there are two or more mutations, despite the significance of mutation clusters for disease pathways and protein design studies. Here, we analyze the largest available dataset of double point mutation stability and benchmark several widely used protein stability models on this and other datasets. We identify a blind spot in how predictors are typically evaluated on multiple mutations, finding that, contrary to assumptions in the field, current stability models are unable to consistently capture epistatic interactions between double mutations. We observe one notable deviation from this trend, which is that epistasis-aware models provide marginally better predictions on stabilizing double point mutations. We develop an extension of the ThermoMPNN framework for double mutant modeling as well as a novel data augmentation scheme which mitigates some of the limitations in available datasets. Collectively, our findings indicate that current protein stability models fail to capture the nuanced epistatic interactions between concurrent mutations due to several factors, including training dataset limitations and insufficient model sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
解圣洁完成签到 ,获得积分10
3秒前
3秒前
3秒前
科研通AI2S应助丰富紫寒采纳,获得10
3秒前
缓慢如之发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
赵振辉发布了新的文献求助10
6秒前
MY完成签到 ,获得积分10
7秒前
7秒前
7秒前
wxy123完成签到,获得积分20
9秒前
科研通AI5应助酷炫的发带采纳,获得10
9秒前
元气蛋完成签到,获得积分10
10秒前
10秒前
我啊完成签到 ,获得积分10
10秒前
10秒前
10秒前
栗子树完成签到,获得积分10
11秒前
11秒前
11秒前
道松先生发布了新的文献求助10
11秒前
坚强坤坤完成签到,获得积分10
13秒前
科研通AI5应助金桔方块采纳,获得10
13秒前
共享精神应助乐观的店员采纳,获得10
14秒前
十七发布了新的文献求助10
16秒前
chenqi发布了新的文献求助10
16秒前
17秒前
17秒前
QJ完成签到,获得积分20
18秒前
端庄的正豪完成签到,获得积分10
18秒前
申申完成签到,获得积分10
18秒前
猪猪hero应助晚风采纳,获得10
18秒前
zlh完成签到,获得积分10
20秒前
21秒前
退伍的三毛完成签到,获得积分10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745499
求助须知:如何正确求助?哪些是违规求助? 3288461
关于积分的说明 10058885
捐赠科研通 3004680
什么是DOI,文献DOI怎么找? 1649740
邀请新用户注册赠送积分活动 785530
科研通“疑难数据库(出版商)”最低求助积分说明 751136