Machine learning-based integration of CD8 T cell-related gene signatures for comprehensive prognostic assessment in lung adenocarcinoma

免疫疗法 肿瘤科 一致性 腺癌 肺癌 内科学 微卫星不稳定性 CD8型 免疫系统 肿瘤微环境 列线图 医学 生物 癌症 基因 免疫学 等位基因 微卫星 生物化学
作者
Jing Yong,Dongdong Wang,Huiming Yu
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:13 (7): 3217-3241
标识
DOI:10.21037/tcr-23-2332
摘要

Background: Lung adenocarcinoma (LUAD) stands as the most prevalent histological subtype of lung cancer, exhibiting heterogeneity in outcomes and diverse responses to therapy. CD8 T cells are consistently present throughout all stages of tumor development and play a pivotal role within the tumor microenvironment (TME). Our objective was to investigate the expression profiles of CD8 T cell marker genes, establish a prognostic risk model based on these genes in LUAD, and explore its relationship with immunotherapy response. Methods: By leveraging the expression data and clinical records from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts, we identified 23 consensus prognostic genes. Employing ten machine-learning algorithms, we generated 101 combinations, ultimately selecting the optimal algorithm to construct an artificial intelligence-derived prognostic signature named riskScore. This selection was based on the average concordance index (C-index) across three testing cohorts. Results: RiskScore emerged as an independent risk factor for overall survival (OS), progression-free interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS) in LUAD. Notably, riskScore exhibited notably superior predictive accuracy compared to traditional clinical variables. Furthermore, we observed a positive correlation between the high-risk riskScore group and tumor-promoting biological functions, lower tumor mutational burden (TMB), lower neoantigen (NEO) load, and lower microsatellite instability (MSI) scores, as well as reduced immune cell infiltration and an increased probability of immune evasion within the TME. Of significance, the immunophenoscore (IPS) score displayed significant differences among risk subgroups, and riskScore effectively stratified patients in the IMvigor210 and GSE135222 immunotherapy cohort based on their survival outcomes. Additionally, we identified potential drugs that could target specific risk subgroups. Conclusions: In summary, riskScore demonstrates its potential as a robust and promising tool for guiding clinical management and tailoring individualized treatments for LUAD patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明书蝶完成签到 ,获得积分10
1秒前
lzzj发布了新的文献求助10
1秒前
Lydia完成签到,获得积分10
2秒前
ddbc发布了新的文献求助10
2秒前
2秒前
幽逸发布了新的文献求助10
4秒前
4秒前
半夏完成签到 ,获得积分10
5秒前
5秒前
6秒前
徐小美发布了新的文献求助30
7秒前
1212发布了新的文献求助10
8秒前
111完成签到,获得积分10
8秒前
ddbc完成签到,获得积分10
9秒前
在雨里思考完成签到,获得积分10
9秒前
10秒前
乐乐应助杨小鸿采纳,获得10
11秒前
11秒前
紧张的谷槐完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
幽逸完成签到,获得积分10
12秒前
Szw666完成签到,获得积分10
17秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
jojo完成签到 ,获得积分10
19秒前
20秒前
lll完成签到,获得积分20
20秒前
VAN发布了新的文献求助10
23秒前
徐小美完成签到,获得积分20
24秒前
传奇3应助lll采纳,获得30
24秒前
老仙翁完成签到,获得积分10
24秒前
lilyz615完成签到,获得积分10
26秒前
27秒前
ding应助听见采纳,获得10
29秒前
29秒前
30秒前
斯文败类应助kuny采纳,获得10
30秒前
77发布了新的文献求助10
31秒前
aniver完成签到 ,获得积分10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978