Machine learning-based integration of CD8 T cell-related gene signatures for comprehensive prognostic assessment in lung adenocarcinoma

免疫疗法 肿瘤科 一致性 腺癌 肺癌 内科学 微卫星不稳定性 CD8型 免疫系统 肿瘤微环境 列线图 医学 生物 癌症 基因 免疫学 等位基因 生物化学 微卫星
作者
Jing Yong,Dongdong Wang,Huiming Yu
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:13 (7): 3217-3241
标识
DOI:10.21037/tcr-23-2332
摘要

Background: Lung adenocarcinoma (LUAD) stands as the most prevalent histological subtype of lung cancer, exhibiting heterogeneity in outcomes and diverse responses to therapy. CD8 T cells are consistently present throughout all stages of tumor development and play a pivotal role within the tumor microenvironment (TME). Our objective was to investigate the expression profiles of CD8 T cell marker genes, establish a prognostic risk model based on these genes in LUAD, and explore its relationship with immunotherapy response. Methods: By leveraging the expression data and clinical records from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts, we identified 23 consensus prognostic genes. Employing ten machine-learning algorithms, we generated 101 combinations, ultimately selecting the optimal algorithm to construct an artificial intelligence-derived prognostic signature named riskScore. This selection was based on the average concordance index (C-index) across three testing cohorts. Results: RiskScore emerged as an independent risk factor for overall survival (OS), progression-free interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS) in LUAD. Notably, riskScore exhibited notably superior predictive accuracy compared to traditional clinical variables. Furthermore, we observed a positive correlation between the high-risk riskScore group and tumor-promoting biological functions, lower tumor mutational burden (TMB), lower neoantigen (NEO) load, and lower microsatellite instability (MSI) scores, as well as reduced immune cell infiltration and an increased probability of immune evasion within the TME. Of significance, the immunophenoscore (IPS) score displayed significant differences among risk subgroups, and riskScore effectively stratified patients in the IMvigor210 and GSE135222 immunotherapy cohort based on their survival outcomes. Additionally, we identified potential drugs that could target specific risk subgroups. Conclusions: In summary, riskScore demonstrates its potential as a robust and promising tool for guiding clinical management and tailoring individualized treatments for LUAD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天丶灵灵完成签到,获得积分10
刚刚
湖里完成签到,获得积分10
刚刚
iNk应助kkk12245采纳,获得10
刚刚
英俊的铭应助kkk12245采纳,获得10
刚刚
科研通AI2S应助浅是宝贝采纳,获得10
1秒前
4652376完成签到,获得积分10
2秒前
方大完成签到,获得积分10
2秒前
这只蜗牛爬的有点慢完成签到 ,获得积分10
2秒前
南宫映榕完成签到,获得积分10
2秒前
香蕉觅云应助子不语采纳,获得10
3秒前
朴实寻琴完成签到 ,获得积分10
4秒前
冷静宛海完成签到,获得积分10
4秒前
xiaowang完成签到,获得积分10
4秒前
4秒前
shen发布了新的文献求助10
4秒前
niumi190完成签到,获得积分10
5秒前
Jasper应助优美的背包采纳,获得10
6秒前
zh完成签到 ,获得积分10
7秒前
万泉部诗人完成签到,获得积分10
7秒前
自然亦竹完成签到,获得积分10
7秒前
社恐Forza发布了新的文献求助10
8秒前
李爱国应助rwewe采纳,获得10
8秒前
科研鸟发布了新的文献求助10
8秒前
忧郁友绿完成签到,获得积分10
8秒前
kkk12245完成签到,获得积分20
9秒前
KingXing应助小秃兄采纳,获得10
9秒前
喜悦浩天完成签到,获得积分10
9秒前
XaiverX完成签到,获得积分10
10秒前
冯冯完成签到 ,获得积分10
11秒前
洛尘完成签到 ,获得积分10
11秒前
酷波er应助xiaohcuan712采纳,获得200
11秒前
小项完成签到,获得积分10
12秒前
zhou完成签到,获得积分10
12秒前
文章多多完成签到,获得积分10
13秒前
14秒前
上官若男应助tkdzjr12345采纳,获得10
14秒前
科研通AI2S应助yx阿聪采纳,获得10
14秒前
Lgenius完成签到 ,获得积分10
15秒前
16秒前
Amancio118完成签到 ,获得积分10
16秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169