Machine learning-based integration of CD8 T cell-related gene signatures for comprehensive prognostic assessment in lung adenocarcinoma

免疫疗法 肿瘤科 一致性 腺癌 肺癌 内科学 微卫星不稳定性 CD8型 免疫系统 肿瘤微环境 列线图 医学 生物 癌症 基因 免疫学 等位基因 微卫星 生物化学
作者
Jing Yong,Dongdong Wang,Huiming Yu
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:13 (7): 3217-3241
标识
DOI:10.21037/tcr-23-2332
摘要

Background: Lung adenocarcinoma (LUAD) stands as the most prevalent histological subtype of lung cancer, exhibiting heterogeneity in outcomes and diverse responses to therapy. CD8 T cells are consistently present throughout all stages of tumor development and play a pivotal role within the tumor microenvironment (TME). Our objective was to investigate the expression profiles of CD8 T cell marker genes, establish a prognostic risk model based on these genes in LUAD, and explore its relationship with immunotherapy response. Methods: By leveraging the expression data and clinical records from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts, we identified 23 consensus prognostic genes. Employing ten machine-learning algorithms, we generated 101 combinations, ultimately selecting the optimal algorithm to construct an artificial intelligence-derived prognostic signature named riskScore. This selection was based on the average concordance index (C-index) across three testing cohorts. Results: RiskScore emerged as an independent risk factor for overall survival (OS), progression-free interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS) in LUAD. Notably, riskScore exhibited notably superior predictive accuracy compared to traditional clinical variables. Furthermore, we observed a positive correlation between the high-risk riskScore group and tumor-promoting biological functions, lower tumor mutational burden (TMB), lower neoantigen (NEO) load, and lower microsatellite instability (MSI) scores, as well as reduced immune cell infiltration and an increased probability of immune evasion within the TME. Of significance, the immunophenoscore (IPS) score displayed significant differences among risk subgroups, and riskScore effectively stratified patients in the IMvigor210 and GSE135222 immunotherapy cohort based on their survival outcomes. Additionally, we identified potential drugs that could target specific risk subgroups. Conclusions: In summary, riskScore demonstrates its potential as a robust and promising tool for guiding clinical management and tailoring individualized treatments for LUAD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助魏不不采纳,获得10
刚刚
後知後孓完成签到,获得积分10
1秒前
2秒前
2秒前
周维发布了新的文献求助10
2秒前
3秒前
想毕业完成签到,获得积分10
3秒前
後知後孓发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
狂野谷冬完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
ZexiWu发布了新的文献求助20
6秒前
玖念发布了新的文献求助10
7秒前
想毕业发布了新的文献求助40
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
kingwill应助科研通管家采纳,获得20
7秒前
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
糖异生完成签到,获得积分10
8秒前
传奇3应助科研通管家采纳,获得30
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
lanananan发布了新的文献求助10
8秒前
Wang完成签到,获得积分10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
ZJPPPP应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
kingwill应助科研通管家采纳,获得20
8秒前
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得30
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709