亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight Vision Transformer for damaged wheat detection and classification using spectrograms

光谱图 人工智能 计算机科学 计算机视觉 图像处理 模式识别(心理学) 图像(数学)
作者
Hao Lin,Min Guo,Miao Ma
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (05)
标识
DOI:10.1117/1.jei.33.5.053063
摘要

Grain is one of the basic human necessities, and its quality and safety directly impact human dietary health. Various issues occur during grain storage, primarily mold and pest infestation. With the development of artificial intelligence, increasingly, more technologies are applied to grain detection and classification. Transformer-based models are becoming popular in grain detection. Although transformer models exhibit excellent performance, they are often large and cumbersome, limiting practical applications. We propose a framework named KD-ASF based on intermediate layer knowledge distillation and one-shot neural architecture search, to optimize the hyperparameters of vision transformer (ViT) for detecting and classifying molded wheat kernels (MDK), Insect-Damaged wheat kernels (IDK), and undamaged wheat kernels (UDK). In KD-ASF, we use the ViT model as our teacher network. Next, we design a search space containing adjustable hyperparameters of transformer building blocks. The super-network stacks maximum transformer building blocks and is trained under the guidance of the teacher network. Subsequently, the trained super-network undergoes evolutionary search, and the resulting networks are used for classifying different wheat kernels. We conducted experiments using a five-fold cross-validation approach and obtained an F1 score of 97.13%, and the last model parameter size is only 5.94M. The results demonstrate that this method not only outperforms the majority of neural networks in terms of performance but also has a significantly smaller model size than most network models. Its lightweight nature facilitates easy deployment and application. These findings indicate that the structure of KD-ASF is feasible and effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
容若发布了新的文献求助10
10秒前
11秒前
19秒前
上官若男应助爱听歌笑寒采纳,获得10
22秒前
jimmy_bytheway完成签到,获得积分0
26秒前
27秒前
31秒前
容若发布了新的文献求助10
31秒前
33秒前
重庆森林发布了新的文献求助10
37秒前
容若发布了新的文献求助10
49秒前
重庆森林完成签到,获得积分20
56秒前
jinyue完成签到 ,获得积分10
1分钟前
huxuehong完成签到 ,获得积分10
1分钟前
三金发布了新的文献求助200
1分钟前
1分钟前
怕孤独的白凡完成签到 ,获得积分10
1分钟前
JamesPei应助爱听歌笑寒采纳,获得10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
激情的冷风完成签到,获得积分20
1分钟前
Docgyj完成签到 ,获得积分0
1分钟前
2分钟前
容若发布了新的文献求助10
2分钟前
搜集达人应助陶1122采纳,获得10
2分钟前
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
2分钟前
小马甲应助爱听歌笑寒采纳,获得10
2分钟前
爱听歌笑寒完成签到,获得积分10
2分钟前
2分钟前
容若发布了新的文献求助10
2分钟前
2分钟前
深情安青应助容若采纳,获得10
2分钟前
3分钟前
路脚下完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611282
求助须知:如何正确求助?哪些是违规求助? 4016845
关于积分的说明 12435757
捐赠科研通 3698687
什么是DOI,文献DOI怎么找? 2039615
邀请新用户注册赠送积分活动 1072446
科研通“疑难数据库(出版商)”最低求助积分说明 956127