Lightweight Vision Transformer for damaged wheat detection and classification using spectrograms

光谱图 人工智能 计算机科学 计算机视觉 图像处理 模式识别(心理学) 图像(数学)
作者
Hao Lin,Min Guo,Miao Ma
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (05)
标识
DOI:10.1117/1.jei.33.5.053063
摘要

Grain is one of the basic human necessities, and its quality and safety directly impact human dietary health. Various issues occur during grain storage, primarily mold and pest infestation. With the development of artificial intelligence, increasingly, more technologies are applied to grain detection and classification. Transformer-based models are becoming popular in grain detection. Although transformer models exhibit excellent performance, they are often large and cumbersome, limiting practical applications. We propose a framework named KD-ASF based on intermediate layer knowledge distillation and one-shot neural architecture search, to optimize the hyperparameters of vision transformer (ViT) for detecting and classifying molded wheat kernels (MDK), Insect-Damaged wheat kernels (IDK), and undamaged wheat kernels (UDK). In KD-ASF, we use the ViT model as our teacher network. Next, we design a search space containing adjustable hyperparameters of transformer building blocks. The super-network stacks maximum transformer building blocks and is trained under the guidance of the teacher network. Subsequently, the trained super-network undergoes evolutionary search, and the resulting networks are used for classifying different wheat kernels. We conducted experiments using a five-fold cross-validation approach and obtained an F1 score of 97.13%, and the last model parameter size is only 5.94M. The results demonstrate that this method not only outperforms the majority of neural networks in terms of performance but also has a significantly smaller model size than most network models. Its lightweight nature facilitates easy deployment and application. These findings indicate that the structure of KD-ASF is feasible and effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯丹康完成签到,获得积分10
刚刚
yan发布了新的文献求助10
1秒前
HX完成签到,获得积分10
3秒前
FashionBoy应助huaaaaaa1采纳,获得10
3秒前
百里怀蕊发布了新的文献求助10
5秒前
5秒前
5秒前
HJM应助露似珍珠月似弓采纳,获得10
8秒前
派大星发布了新的文献求助10
8秒前
Cape发布了新的文献求助10
8秒前
SciGPT应助germl采纳,获得10
9秒前
CodeCraft应助Paper多多采纳,获得10
10秒前
斯文败类应助6666采纳,获得10
12秒前
carl完成签到,获得积分10
15秒前
16秒前
ChemistryZyh应助端庄的正豪采纳,获得10
16秒前
asdxsweef应助yyawkx采纳,获得10
18秒前
愫问完成签到,获得积分10
18秒前
Cassie应助ppp采纳,获得10
18秒前
19秒前
carl发布了新的文献求助10
19秒前
Paper多多完成签到,获得积分10
19秒前
21秒前
22秒前
自由质数发布了新的文献求助30
22秒前
Cape发布了新的文献求助10
23秒前
彭于晏应助研友_X89J6L采纳,获得10
23秒前
24秒前
zz321完成签到,获得积分10
25秒前
26秒前
6666发布了新的文献求助10
27秒前
大力关注了科研通微信公众号
28秒前
怕黑的纸鹤完成签到,获得积分10
28秒前
28秒前
小费发布了新的文献求助200
29秒前
Aspringin发布了新的文献求助10
29秒前
30秒前
希望天下0贩的0应助fang采纳,获得40
30秒前
30秒前
cyw完成签到,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289559
求助须知:如何正确求助?哪些是违规求助? 2926539
关于积分的说明 8427772
捐赠科研通 2597793
什么是DOI,文献DOI怎么找? 1417361
科研通“疑难数据库(出版商)”最低求助积分说明 659675
邀请新用户注册赠送积分活动 642143