光谱图
人工智能
计算机科学
计算机视觉
图像处理
模式识别(心理学)
图像(数学)
作者
Hao Lin,Min Guo,Miao Ma
标识
DOI:10.1117/1.jei.33.5.053063
摘要
Grain is one of the basic human necessities, and its quality and safety directly impact human dietary health. Various issues occur during grain storage, primarily mold and pest infestation. With the development of artificial intelligence, increasingly, more technologies are applied to grain detection and classification. Transformer-based models are becoming popular in grain detection. Although transformer models exhibit excellent performance, they are often large and cumbersome, limiting practical applications. We propose a framework named KD-ASF based on intermediate layer knowledge distillation and one-shot neural architecture search, to optimize the hyperparameters of vision transformer (ViT) for detecting and classifying molded wheat kernels (MDK), Insect-Damaged wheat kernels (IDK), and undamaged wheat kernels (UDK). In KD-ASF, we use the ViT model as our teacher network. Next, we design a search space containing adjustable hyperparameters of transformer building blocks. The super-network stacks maximum transformer building blocks and is trained under the guidance of the teacher network. Subsequently, the trained super-network undergoes evolutionary search, and the resulting networks are used for classifying different wheat kernels. We conducted experiments using a five-fold cross-validation approach and obtained an F1 score of 97.13%, and the last model parameter size is only 5.94M. The results demonstrate that this method not only outperforms the majority of neural networks in terms of performance but also has a significantly smaller model size than most network models. Its lightweight nature facilitates easy deployment and application. These findings indicate that the structure of KD-ASF is feasible and effective.
科研通智能强力驱动
Strongly Powered by AbleSci AI