电流(流体)
降级(电信)
蛋白质降解
癌症研究
计算机科学
医学
工程类
细胞生物学
生物
电气工程
电信
作者
Janarthanan Venkatesan,Dhanashree Murugan,Kalaiarasu Lakshminarayanan,Alexis R. Smith,Harashkumar Vasanthakumari Thirumalaiswamy,Hariprasath Kandhasamy,Boutheina Zender,Guangrong Zheng,Loganathan Rangasamy
标识
DOI:10.1016/j.pharmthera.2024.108725
摘要
Targeted protein degradation (TPD) has emerged as a prominent and vital strategy for therapeutic intervention of cancers and other diseases. One such approach involves the exploration of proteolysis targeting chimeras (PROTACs) for the selective elimination of disease-causing proteins through the innate ubiquitin-proteasome pathway. Due to the unprecedented achievements of various PROTAC molecules in clinical trials, researchers have moved towards other physiological protein degradation approaches for the targeted degradation of abnormal proteins, including lysosome-targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), autophagosome-tethering compounds (ATTECs), molecular glue degraders, and other derivatives for their precise mode of action. Despite numerous advantages, these molecules face challenges in solubility, permeability, bioavailability, and potential off-target or on-target off-tissue effects. Thus, an urgent need arises to direct the action of these degrader molecules specifically against cancer cells, leaving the proteins of non-cancerous cells intact. Recent advancements in TPD have led to innovative delivery methods that ensure the degraders are delivered in a cell- or tissue-specific manner to achieve cell/tissue-selective degradation of target proteins. Such receptor-specific active delivery or nano-based passive delivery of the PROTACs could be achieved by conjugating them with targeting ligands (antibodies, aptamers, peptides, or small molecule ligands) or nano-based carriers. These techniques help to achieve precise delivery of PROTAC payloads to the target sites. Notably, the successful entry of a Degrader Antibody Conjugate (DAC), ORM-5029, into a phase 1 clinical trial underscores the therapeutic potential of these conjugates, including LYTAC-antibody conjugates (LACs) and aptamer-based targeted protein degraders. Further, using bispecific antibody-based degraders (AbTACs) and delivering the PROTAC pre-fused with E3 ligases provides a solution for cell type-specific protein degradation. Here, we highlighted the current advancements and challenges associated with developing new tumour-specific protein degrader approaches and summarized their potential as single agents or combination therapeutics for cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI