环境科学
植被(病理学)
水华
生态学
沉积物
恢复生态学
藻类
水文学(农业)
浮游植物
生物
地质学
营养物
地貌学
医学
岩土工程
病理
作者
Wenjie Wan,Hans‐Peter Grossart,Weihong Zhang,Xiang Xiong,Wenke Yuan,Wenzhi Liu,Yuyi Yang
标识
DOI:10.1016/j.watres.2024.122516
摘要
Elucidating the influences of ecological restoration measure of lakeshore vegetation removal on water quality and biological community is an important but underestimated subject. We adopted molecular and statistical tools to estimate ecological restoration performance in a plateau lake receiving vegetation removal and simultaneously investigated variabilities of bacterial communities in water and sediment. Significant decreases in lake trophic level and algal bloom degree followed notable decreases in water total nitrogen and total phosphorus after vegetation removal. Non-significant changes in sediment nutrients accompanied remarkable variabilities of abundance and composition of nutrient-cycling functional genes (NCFGs) of sediment bacteria. Taxonomic and phylogenetic α-diversities, functional redundancies, and dispersal potentials of bacteria in water and sediment decreased after vegetation removal, and community successions of water and sediment bacteria were separately significant and non-significant. There were opposite changes in ecological attributes of bacteria in water and sediment in response to vegetation removal, including niche breadth, species replacement, richness difference, community complexity, and community stability. Species replacement rather than richness difference affected more on taxonomic β-diversities of bacteria in water and sediment before and after vegetation removal, and determinism rather than stochasticity dominated bacterial community assemblage. Our results highlighted vegetation removal mitigated algal bloom and affected differently on landscapes of water and sediment bacteria. These findings point to dominant ecological mechanisms underlying landscape shifts in water and sediment bacteria in a disturbed lake receiving vegetation removal and have the potential to guide lake ecological restoration.
科研通智能强力驱动
Strongly Powered by AbleSci AI