Glutamine synthetase accelerates re-endothelialization of vascular grafts by mitigating endothelial cell dysfunction in a rat model

材料科学 谷氨酰胺合成酶 生物医学工程 细胞 内皮干细胞 谷氨酰胺 细胞生物学 生物物理学 医学 生物化学 化学 生物 氨基酸 体外
作者
Xinbo Wei,Li Wang,Xing Zheng,Peng Chen,Xi He,Xiaoye Tuo,Haoran Su,Gang Zhou,Haifeng Liu,Yubo Fan
出处
期刊:Biomaterials [Elsevier]
卷期号:314: 122877-122877
标识
DOI:10.1016/j.biomaterials.2024.122877
摘要

Endothelial cell (EC) dysfunction within the aorta has long been recognized as a prominent contributor to the progression of atherosclerosis and the subsequent failure of vascular graft transplantation. However, the direct relationship between EC dysfunction and vascular remodeling remains to be investigated. In this study, we sought to address this knowledge gap by employing a strategy involving the release of glutamine synthetase (GS), which effectively activated endothelial metabolism and mitigates EC dysfunction. To achieve this, we developed GS-loaded small-diameter vascular grafts (GSVG) through the electrospinning technique, utilizing dual-component solutions consisting of photo-crosslinkable hyaluronic acid and polycaprolactone. Through an in vitro model of oxidized low-density lipoprotein-induced injury in human umbilical vein endothelial cells (HUVECs), we provided compelling evidence that the GSVG promoted the restoration of motility, angiogenic sprouting, and proliferation in dysfunctional HUVECs by enhancing cellular metabolism. Furthermore, the sequencing results indicated that these effects were mediated by miR-122-5p-related signaling pathways. Remarkably, the GSVG also exhibited regulatory capabilities in shifting vascular smooth muscle cells towards a contractile phenotype, mitigating inflammatory responses and thereby preventing vascular calcification. Finally, our data demonstrated that GS incorporation significantly enhanced re-endothelialization of vascular grafts in a ferric chloride-injured rat model. Collectively, our results offer insights into the promotion of re-endothelialization in vascular grafts by restoring dysfunctional ECs through the augmentation of cellular metabolism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasmine完成签到 ,获得积分20
刚刚
111完成签到,获得积分10
1秒前
新八发布了新的文献求助10
2秒前
爱吃西瓜的llily完成签到,获得积分10
2秒前
zengzeng完成签到,获得积分10
2秒前
hellogene完成签到,获得积分10
3秒前
明亮元冬发布了新的文献求助10
3秒前
香蕉觅云应助粉嘟嘟loved采纳,获得10
4秒前
天天快乐应助ouyangshi采纳,获得10
4秒前
Jasmine关注了科研通微信公众号
5秒前
扶光完成签到,获得积分10
6秒前
薰硝壤应助默茗采纳,获得10
6秒前
6秒前
科研通AI2S应助susu采纳,获得10
7秒前
野风车发布了新的文献求助10
7秒前
evelynnni完成签到,获得积分20
8秒前
Hello应助focco采纳,获得30
9秒前
科研小白完成签到,获得积分10
9秒前
爱学习的YY完成签到 ,获得积分10
9秒前
一木完成签到,获得积分10
9秒前
星辰大海应助清新的老四采纳,获得10
10秒前
充电宝应助阔达的曼凡采纳,获得10
10秒前
cij123驳回了dzbb应助
10秒前
华仔应助hellogene采纳,获得10
10秒前
薰硝壤应助好好学习采纳,获得20
11秒前
共享精神应助人走茶凉采纳,获得10
11秒前
科目三应助NicheFactor采纳,获得10
11秒前
桐桐应助ziying126采纳,获得10
12秒前
明亮元冬完成签到,获得积分10
12秒前
MMMM完成签到,获得积分10
12秒前
gw完成签到 ,获得积分10
13秒前
英姑应助蓦然回首采纳,获得10
13秒前
小二郎应助2010采纳,获得10
14秒前
15秒前
15秒前
syl4316完成签到 ,获得积分10
16秒前
朴实香露完成签到,获得积分10
17秒前
17秒前
shuxi发布了新的文献求助10
17秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685