Domain-Independent Dynamic Programming and Constraint Programming Approaches for Assembly Line Balancing Problems with Setups

约束规划 计算机科学 动态规划 领域(数学分析) 装配线 约束逻辑程序设计 数学优化 约束满足 反应式程序设计 约束(计算机辅助设计) 并发约束逻辑编程 归纳程序设计 直线(几何图形) 算法 程序设计范式 程序设计语言 随机规划 数学 人工智能 工程类 机械工程 数学分析 几何学 概率逻辑
作者
Jiachen Zhang,J. Christopher Beck
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2024.0603
摘要

We propose domain-independent dynamic programming (DIDP) and constraint programming (CP) models to exactly solve type 1 and type 2 assembly line balancing problem with sequence-dependent setup times (SUALBPs). The goal is to assign tasks to assembly stations and to sequence these tasks within each station while satisfying precedence relations specified between a subset of task pairs. Each task has a given processing time and a setup time dependent on the previous task on the station to which the task is assigned. The sum of the processing and setup times of tasks assigned to each station constitute the station time and the maximum station time is called the cycle time. For the type 1 SUALBP (SUALBP-1), the objective is to minimize the number of stations, given a maximum cycle time. For the type 2 SUALBP (SUALBP-2), the objective is to minimize the cycle time, given the number of stations. On a set of diverse SUALBP instances, experimental results show that our approaches significantly outperform the state-of-the-art mixed integer programming models for SUALBP-1. For SUALBP-2, the DIDP model outperforms the state-of-the-art exact approach based on logic-based Benders decomposition. By closing 76 open instances for SUALBP-2, our results demonstrate the promise of DIDP for solving complex planning and scheduling problems. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods and Analysis. Funding: This work was supported by Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2020-04039]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0603 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0603 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
坨坨西州发布了新的文献求助10
2秒前
彬彬发布了新的文献求助10
2秒前
大模型应助Abao采纳,获得10
2秒前
sfw驳回了苏照杭应助
3秒前
dingdong发布了新的文献求助10
3秒前
别拖延了要毕业啊完成签到,获得积分10
4秒前
4秒前
4秒前
Rrr发布了新的文献求助10
4秒前
dingdong发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
yuan发布了新的文献求助10
7秒前
8秒前
cc完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
一一发布了新的文献求助10
9秒前
领导范儿应助Chridy采纳,获得10
9秒前
10秒前
凤凰山发布了新的文献求助10
10秒前
10秒前
孔雨珍发布了新的文献求助10
10秒前
淡定的思松应助通~采纳,获得10
11秒前
11秒前
明亮的八宝粥完成签到,获得积分10
11秒前
mayungui发布了新的文献求助10
11秒前
大型海狮完成签到,获得积分10
11秒前
搜集达人应助科研菜鸟采纳,获得10
12秒前
雨天有伞完成签到,获得积分10
12秒前
蕾子发布了新的文献求助10
12秒前
12秒前
zhui发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794