Domain-Independent Dynamic Programming and Constraint Programming Approaches for Assembly Line Balancing Problems with Setups

约束规划 计算机科学 动态规划 领域(数学分析) 装配线 约束逻辑程序设计 数学优化 约束满足 反应式程序设计 约束(计算机辅助设计) 并发约束逻辑编程 归纳程序设计 直线(几何图形) 算法 程序设计范式 程序设计语言 随机规划 数学 人工智能 工程类 机械工程 数学分析 几何学 概率逻辑
作者
Jiachen Zhang,J. Christopher Beck
出处
期刊:Informs Journal on Computing 被引量:1
标识
DOI:10.1287/ijoc.2024.0603
摘要

We propose domain-independent dynamic programming (DIDP) and constraint programming (CP) models to exactly solve type 1 and type 2 assembly line balancing problem with sequence-dependent setup times (SUALBPs). The goal is to assign tasks to assembly stations and to sequence these tasks within each station while satisfying precedence relations specified between a subset of task pairs. Each task has a given processing time and a setup time dependent on the previous task on the station to which the task is assigned. The sum of the processing and setup times of tasks assigned to each station constitute the station time and the maximum station time is called the cycle time. For the type 1 SUALBP (SUALBP-1), the objective is to minimize the number of stations, given a maximum cycle time. For the type 2 SUALBP (SUALBP-2), the objective is to minimize the cycle time, given the number of stations. On a set of diverse SUALBP instances, experimental results show that our approaches significantly outperform the state-of-the-art mixed integer programming models for SUALBP-1. For SUALBP-2, the DIDP model outperforms the state-of-the-art exact approach based on logic-based Benders decomposition. By closing 76 open instances for SUALBP-2, our results demonstrate the promise of DIDP for solving complex planning and scheduling problems. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods and Analysis. Funding: This work was supported by Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2020-04039]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0603 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0603 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
2秒前
3秒前
4秒前
孙雪君完成签到,获得积分20
4秒前
Jasper应助cyh采纳,获得10
5秒前
huang发布了新的文献求助10
5秒前
6秒前
6秒前
cipher发布了新的文献求助10
6秒前
迷途发布了新的文献求助10
6秒前
7秒前
7秒前
Ferry发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
香蕉觅云应助跳跃的曼荷采纳,获得10
9秒前
小马甲应助lxy采纳,获得10
9秒前
LHZ发布了新的文献求助10
10秒前
10秒前
dio发布了新的文献求助10
11秒前
田様应助等等采纳,获得10
12秒前
凌代萱完成签到 ,获得积分10
13秒前
zsyhcl应助神经蛙采纳,获得10
14秒前
汉堡包应助棒棒的红红采纳,获得10
14秒前
mzc发布了新的文献求助10
14秒前
希望天下0贩的0应助rslysywd采纳,获得10
15秒前
16秒前
Sarahminn发布了新的文献求助10
16秒前
18秒前
19秒前
高贵冬卉完成签到 ,获得积分10
19秒前
19秒前
李爱国应助Lliu采纳,获得10
19秒前
19秒前
东哥完成签到,获得积分20
20秒前
20秒前
mzc完成签到,获得积分10
21秒前
22秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501422
求助须知:如何正确求助?哪些是违规求助? 4597711
关于积分的说明 14460536
捐赠科研通 4531236
什么是DOI,文献DOI怎么找? 2483206
邀请新用户注册赠送积分活动 1466751
关于科研通互助平台的介绍 1439386