Modeling the predictors of health information avoidance behavior: Implications from the stimulus organism response (S-O-R) theory

心理学 刺激(心理学) 有机体 社会心理学 认知心理学 生物 古生物学
作者
Lijuan Wang,Su Zhang,Salman Bin Naeem
出处
期刊:Journal of Librarianship and Information Science [SAGE]
标识
DOI:10.1177/09610006241290265
摘要

The study aimed at modeling the factors that influence health information avoidance behavior, as well as measuring and validating the stimulus organism response (S-O-R) theory. A seven-factor (information overload, information sources exposure, risk perception, health information anxiety, cognitive dissonance, sadness, and health information avoidance) measurement model was used to estimate the health information avoidance behavior using the structural equation modeling (SEM). The findings show that risk perception had a significant positive influence on sadness (β = 0.492, CR = 7.445, p < 0.05), information overload exerts a significant positive impact on cognitive dissonance (β = 0.174, CR = 2.192, p < 0.05) and sadness significantly influence health information avoidance (β = 0.174, CR = 2.342, p < 0.05). Information overload exhibits a positive, but statistically non-significant influence on health information anxiety (β = 0.83, CR = 1.094, p > 0.05). The findings of SEM demonstrate acceptable model fit indices: χ 2 = 1.493, DF = 732; p = 0.000; IFI = 0.931; and TLI = 0.925, CFI = 0.930, SRMR = 0.045, RMSEA = 0.044. The study concludes that risk perception, sadness, and information overload are the main predictors of health information avoidance behavior. Other factors such as health information anxiety, exposure to different information sources, and cognitive dissonance had a non-significant impact on information avoidance behavior. The findings hold significant global relevance, potentially contributing to improved information-seeking behavior research. Our study also contributes to the advancement of the S-O-R (Stimulus-Organism-Response) framework

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助LCct采纳,获得10
刚刚
刚刚
深情安青应助zhuboujs采纳,获得10
1秒前
chentong完成签到,获得积分10
1秒前
1秒前
2秒前
Silole完成签到,获得积分10
2秒前
chen完成签到,获得积分10
2秒前
马孔多暴雨完成签到,获得积分10
2秒前
细腻的念真完成签到,获得积分10
2秒前
渊_完成签到 ,获得积分10
2秒前
2秒前
crytek发布了新的文献求助10
3秒前
爰采唐矣完成签到,获得积分10
3秒前
3秒前
椰树椰汁完成签到,获得积分10
3秒前
Orange应助杨潇丶丶采纳,获得10
3秒前
桐桐应助莫羽倾尘采纳,获得10
3秒前
4秒前
4秒前
4秒前
CoNor发布了新的文献求助10
5秒前
小巧醉冬发布了新的文献求助10
5秒前
5秒前
研友_85YNe8发布了新的文献求助10
5秒前
超越俗尘发布了新的文献求助10
6秒前
6秒前
惊鸿一面完成签到,获得积分10
6秒前
简默发布了新的文献求助10
6秒前
科研通AI2S应助务实寒天采纳,获得10
6秒前
HY完成签到,获得积分10
6秒前
7秒前
jisean完成签到,获得积分10
7秒前
innocence完成签到,获得积分10
7秒前
LCct完成签到,获得积分20
8秒前
li发布了新的文献求助10
8秒前
dhgg完成签到,获得积分10
8秒前
单薄雅阳发布了新的文献求助10
8秒前
香蕉诗蕊举报睿睿求助涉嫌违规
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034