Modeling the predictors of health information avoidance behavior: Implications from the stimulus organism response (S-O-R) theory

心理学 刺激(心理学) 有机体 社会心理学 认知心理学 生物 古生物学
作者
Lijuan Wang,Su Zhang,Salman Bin Naeem
出处
期刊:Journal of Librarianship and Information Science [SAGE Publishing]
标识
DOI:10.1177/09610006241290265
摘要

The study aimed at modeling the factors that influence health information avoidance behavior, as well as measuring and validating the stimulus organism response (S-O-R) theory. A seven-factor (information overload, information sources exposure, risk perception, health information anxiety, cognitive dissonance, sadness, and health information avoidance) measurement model was used to estimate the health information avoidance behavior using the structural equation modeling (SEM). The findings show that risk perception had a significant positive influence on sadness (β = 0.492, CR = 7.445, p < 0.05), information overload exerts a significant positive impact on cognitive dissonance (β = 0.174, CR = 2.192, p < 0.05) and sadness significantly influence health information avoidance (β = 0.174, CR = 2.342, p < 0.05). Information overload exhibits a positive, but statistically non-significant influence on health information anxiety (β = 0.83, CR = 1.094, p > 0.05). The findings of SEM demonstrate acceptable model fit indices: χ 2 = 1.493, DF = 732; p = 0.000; IFI = 0.931; and TLI = 0.925, CFI = 0.930, SRMR = 0.045, RMSEA = 0.044. The study concludes that risk perception, sadness, and information overload are the main predictors of health information avoidance behavior. Other factors such as health information anxiety, exposure to different information sources, and cognitive dissonance had a non-significant impact on information avoidance behavior. The findings hold significant global relevance, potentially contributing to improved information-seeking behavior research. Our study also contributes to the advancement of the S-O-R (Stimulus-Organism-Response) framework
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
LaTeXer应助科研通管家采纳,获得30
1秒前
LaTeXer应助科研通管家采纳,获得50
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得100
1秒前
鸣笛应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
huahua应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
CZN应助小可爱采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
niccer完成签到,获得积分10
4秒前
lemon发布了新的文献求助30
4秒前
冷傲藏鸟完成签到,获得积分20
4秒前
5秒前
小宇发布了新的文献求助10
5秒前
5秒前
新晋学术小生完成签到 ,获得积分10
6秒前
xixixi发布了新的文献求助10
6秒前
科研通AI2S应助laissez_fairy采纳,获得10
7秒前
7秒前
bfbdfbdf完成签到,获得积分10
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953878
求助须知:如何正确求助?哪些是违规求助? 3499920
关于积分的说明 11097238
捐赠科研通 3230331
什么是DOI,文献DOI怎么找? 1785920
邀请新用户注册赠送积分活动 869697
科研通“疑难数据库(出版商)”最低求助积分说明 801572