Predicting oil accumulation by fruit image processing and linear models in traditional and super high-density olive cultivars

栽培 图像处理 橄榄油 生物 园艺 图像(数学) 农学 数学 计算机科学 食品科学 计算机视觉
作者
Giuseppe Montanaro,Antonio Carlomagno,Angelo Petrozza,Francesco Cellini,Ioanna Manolikaki,Georgios Koubouris,Vitale Nuzzo
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1456800
摘要

The paper focuses on the seasonal oil accumulation in traditional and super-high density (SHD) olive plantations and its modelling employing image-based linear models. For these purposes, at 7-10-day intervals, fruit samples (cultivar Arbequina, Fasola, Frantoio, Koroneiki, Leccino, Maiatica) were pictured and images segmented to extract the Red (R), Green (G), and Blue (B) mean pixel values which were re-arranged in 35 RGB-derived colorimetric indexes ( CIs ). After imaging, the samples were crushed and oil concentration was determined (NIR). The analysis of the correlation between oil and CIs revealed a differential hysteretic behavior depending on the covariates ( CI and cultivar). The hysteresis area ( Hyst ) was then quantified and used to rank the CIs under the hypothesis that CIs with the maximum or minimum Hyst had the highest correlation coefficient and were the most suitable predictors within a general linear model. The results show that the predictors selected according to Hyst-based criteria had high accuracy as determined using a Global Performance Indicator (GPI) accounting for various performance metrics ( R 2 , RSME, MAE). The use of a general linear model here presented is a new computational option integrating current methods mostly based on artificial neural networks. RGB-based image phenotyping can effectively predict key quality traits in olive fruit supporting the transition of the olive sector towards a digital agriculture domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
123321发布了新的文献求助10
2秒前
Loki发布了新的文献求助10
2秒前
科研顺利发布了新的文献求助10
3秒前
3秒前
不会失忆完成签到,获得积分10
4秒前
阳yang完成签到,获得积分10
4秒前
5秒前
逸风望完成签到,获得积分10
8秒前
充电宝应助Loki采纳,获得10
8秒前
wxr发布了新的文献求助10
11秒前
螃蟹One完成签到 ,获得积分10
12秒前
顺顺利利完成签到,获得积分10
12秒前
传奇3应助123321采纳,获得10
12秒前
脑洞疼应助诗与采纳,获得30
13秒前
13秒前
SDM完成签到 ,获得积分10
13秒前
贰鸟应助姜sir采纳,获得20
13秒前
1区top完成签到,获得积分0
13秒前
倒背如流圆周率完成签到,获得积分10
15秒前
121完成签到,获得积分20
15秒前
16秒前
17秒前
18秒前
19秒前
TAN发布了新的文献求助10
19秒前
Lumos应助weslywang采纳,获得10
20秒前
sherry完成签到 ,获得积分10
20秒前
21秒前
听寒完成签到,获得积分10
23秒前
24秒前
听寒发布了新的文献求助10
26秒前
科研路上的干饭桶完成签到,获得积分10
26秒前
科研通AI2S应助121采纳,获得10
26秒前
一二发布了新的文献求助10
27秒前
AT完成签到,获得积分10
28秒前
直率无春完成签到,获得积分10
29秒前
arcremnant完成签到,获得积分10
29秒前
小二郎应助May采纳,获得30
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134917
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774138
捐赠科研通 2441635
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825