Predicting oil accumulation by fruit image processing and linear models in traditional and super high-density olive cultivars

栽培 图像处理 橄榄油 生物 园艺 图像(数学) 农学 数学 计算机科学 食品科学 计算机视觉
作者
Giuseppe Montanaro,Antonio Carlomagno,Angelo Petrozza,Francesco Cellini,Ioanna Manolikaki,Georgios Koubouris,Vitale Nuzzo
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1456800
摘要

The paper focuses on the seasonal oil accumulation in traditional and super-high density (SHD) olive plantations and its modelling employing image-based linear models. For these purposes, at 7-10-day intervals, fruit samples (cultivar Arbequina, Fasola, Frantoio, Koroneiki, Leccino, Maiatica) were pictured and images segmented to extract the Red (R), Green (G), and Blue (B) mean pixel values which were re-arranged in 35 RGB-derived colorimetric indexes ( CIs ). After imaging, the samples were crushed and oil concentration was determined (NIR). The analysis of the correlation between oil and CIs revealed a differential hysteretic behavior depending on the covariates ( CI and cultivar). The hysteresis area ( Hyst ) was then quantified and used to rank the CIs under the hypothesis that CIs with the maximum or minimum Hyst had the highest correlation coefficient and were the most suitable predictors within a general linear model. The results show that the predictors selected according to Hyst-based criteria had high accuracy as determined using a Global Performance Indicator (GPI) accounting for various performance metrics ( R 2 , RSME, MAE). The use of a general linear model here presented is a new computational option integrating current methods mostly based on artificial neural networks. RGB-based image phenotyping can effectively predict key quality traits in olive fruit supporting the transition of the olive sector towards a digital agriculture domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
大葱鸭完成签到,获得积分10
4秒前
袄猴发布了新的文献求助10
4秒前
正月的大雪完成签到,获得积分10
4秒前
QQ完成签到,获得积分10
5秒前
5秒前
白羊发布了新的文献求助20
5秒前
科研通AI2S应助与山采纳,获得50
5秒前
小二郎应助嘟嘟可采纳,获得10
6秒前
kokoFish发布了新的文献求助10
6秒前
Ava应助听闻采纳,获得10
6秒前
Amai发布了新的文献求助10
7秒前
tyj发布了新的文献求助10
7秒前
千寻发布了新的文献求助10
7秒前
刻苦冬菱完成签到,获得积分10
8秒前
QQ发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
shaoming完成签到,获得积分10
11秒前
风起人散发布了新的文献求助10
11秒前
12秒前
早上坏发布了新的文献求助10
14秒前
再吃一颗苹果完成签到,获得积分20
15秒前
黄婷发布了新的文献求助30
15秒前
15秒前
雾梦完成签到,获得积分10
15秒前
16秒前
wyy发布了新的文献求助10
16秒前
华仔应助淳于寻冬采纳,获得10
17秒前
典雅的静发布了新的文献求助10
17秒前
燕燕于飞完成签到,获得积分10
18秒前
丘比特应助袄猴采纳,获得20
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352