Elemental doping tailoring photocatalytic hydrogen evolution of InP/ZnSeS/ZnS quantum dots

量子点 光催化 兴奋剂 材料科学 纳米技术 光电子学 化学工程 化学 催化作用 工程类 有机化学
作者
Xiya Chen,Yudong Guo,Jiabin Li,Huakang Yang,Zhenjun Chen,Dongxiang Luo,Xiao Liu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:496: 153947-153947
标识
DOI:10.1016/j.cej.2024.153947
摘要

• Regulating the types of doped metals was found to have both positive and negative effects on the performance of photocatalytic hydrogen evolution . • Cu-doped InP-based QDs show enhanced hydrogen production thanks to the additional energy level introduced for hole capture. • Mn-doped InP-based QDs exhibit poor performance due to Mn 4+ reduction during reaction. • A ZnSeS intermediate shell reduces interface defects in InP/ZnS QDs , enhancing photocatalytic performance. Photocatalytic water splitting for hydrogen production has garnered considerable attention as an effective method to alleviate energy shortages. In comparison to cadmium-based quantum dots (QDs) photocatalysts, InP QDs possess a smaller bandgap, larger exciton radius, broader absorption range, and are environmentally friendly. Although InP/ZnS core/shell QDs exhibit immense potential in photocatalysis, they suffer from rapid electron-hole recombination owing to interface defects and lattice mismatch. To address these issues, this study introduces an intermediate ZnSeS shell to reduce defects and tailor QD redox properties through transition metals (manganese and copper) doping. The characterization of QDs was performed from various perspectives, including morphology, element distribution, band structure, and charge transport efficiency. Notably, the photoelectrochemical properties of doped QDs were superior to those of the undoped QDs, while Mn-doped QDs showed inferior catalytic performance compared to the undoped ones. The mechanism of different photoelectrochemical and photocatalytic performances has been studied more intensely. The Mn-doped QDs undergo a process where Mn 4+ is converted to Mn 2+ , consuming electrons in competition with the photocatalytic hydrogen evolution process. Conversely, InP/ZnSeS:Cu/ZnS QDs introduced an additional energy level into the original band structure, capturing some holes and slowing down the electron-hole recombination, thereby providing positive feedback for photocatalytic hydrogen production . Profiting from both the synergies of energy level structure and doping metal state, effective electron-hole separation, and rapid electron transfer to the surface of Cu-doped QDs accomplish the efficient hydrogen generation. The present study offers more possibilities for exploiting the required photocatalytic performance of QD catalysts via elemental doping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zheyu完成签到,获得积分10
刚刚
Azure发布了新的文献求助10
1秒前
DamenS完成签到,获得积分10
2秒前
xgx984完成签到,获得积分10
3秒前
redblue发布了新的文献求助10
4秒前
4秒前
Crazyalien完成签到,获得积分10
4秒前
穆紫应助obaica采纳,获得10
4秒前
慕青应助直率的友桃采纳,获得10
6秒前
我是老大应助flypipidan采纳,获得10
7秒前
9秒前
dayandnight完成签到,获得积分10
9秒前
10秒前
12秒前
lemon发布了新的文献求助10
12秒前
13秒前
斯文败类应助小蜡笔采纳,获得10
13秒前
上官若男应助中央采纳,获得10
14秒前
哈哈哈应助张妤文采纳,获得30
15秒前
ddddddd发布了新的文献求助30
15秒前
16秒前
obaica发布了新的文献求助10
18秒前
李健的小迷弟应助啧啧zeze采纳,获得10
20秒前
彧辰发布了新的文献求助10
20秒前
sharronnie完成签到,获得积分20
20秒前
坦率的向日葵完成签到,获得积分10
21秒前
h41692011完成签到 ,获得积分10
23秒前
SciGPT应助睡教早祈两年半采纳,获得30
23秒前
满意星星完成签到,获得积分10
23秒前
Jammie发布了新的文献求助10
25秒前
Singularity应助高君奇采纳,获得10
26秒前
26秒前
舒服的鱼完成签到 ,获得积分10
26秒前
独特的高山完成签到 ,获得积分10
26秒前
等你下课发布了新的文献求助10
27秒前
今后应助生信难民采纳,获得10
27秒前
121314wld完成签到,获得积分10
27秒前
milka完成签到,获得积分10
28秒前
研友_VZG7GZ应助Denmark采纳,获得10
28秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124525
求助须知:如何正确求助?哪些是违规求助? 2774840
关于积分的说明 7724243
捐赠科研通 2430307
什么是DOI,文献DOI怎么找? 1291019
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297