A machine‐learning model of academic resilience in the times of the COVID‐19 pandemic: Evidence drawn from 79 countries/economies in the PISA 2022 mathematics study

大流行 2019年冠状病毒病(COVID-19) 弹性(材料科学) 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 数学教育 心理学 心理弹性 病毒学 社会心理学 医学 物理 传染病(医学专业) 疾病 病理 爆发 热力学
作者
Kwok‐cheung Cheung,Pou‐seong Sit,Jia‐qi Zheng,C Lam,Soi‐kei Mak,Man‐kai Ieong
出处
期刊:British Journal of Educational Psychology [Wiley]
卷期号:94 (4): 1224-1244
标识
DOI:10.1111/bjep.12715
摘要

Abstract Background Given that students from socio‐economically disadvantaged family backgrounds are more likely to suffer from low academic performance, there is an interest in identifying features of academic resilience, which may mitigate the relationship between disadvantaged socio‐economic status and academic performance. Aims This study sought to combine machine learning and explainable artificial intelligence (XAI) technique to identify key features of academic resilience in mathematics learning during COVID‐19. Materials and Methods Based on PISA 2022 data in 79 countries/economies, the random forest model coupled with Shapley additive explanations (SHAP) value technique not only uncovered the key features of academic resilience but also examined the contributions of each key feature. Results Findings indicated that 35 features were identified in the classification of academically resilient and non‐academically resilient students, which largely validated the previous academic resilient framework. Notably, gender differences were shown in the distribution of some key features. Research findings also indicated that resilient students tended to have a stable emotional state, high levels of self‐efficacy, low levels of truancy and positive future aspirations. Discussion This study has established a research paradigm essentially methodological in nature to bridge the gap between psychological theories and big data in the field of educational psychology. Conclusion To sum up, our study shed light on the issues of education equity and quality from a global perspective in the times of the COVID‐19 pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17852573662完成签到,获得积分10
刚刚
Ning_发布了新的文献求助10
1秒前
2秒前
叶水之完成签到,获得积分10
5秒前
7秒前
英勇笑萍完成签到,获得积分10
8秒前
友好冰旋发布了新的文献求助20
10秒前
彭于晏应助卷卷516采纳,获得10
10秒前
13秒前
22秒前
nshdaq12给nshdaq12的求助进行了留言
23秒前
24秒前
28秒前
29秒前
念姬发布了新的文献求助10
29秒前
29秒前
ljm发布了新的文献求助10
34秒前
Asahi完成签到,获得积分10
34秒前
35秒前
司马大都督完成签到,获得积分10
35秒前
果果完成签到,获得积分10
36秒前
丘比特应助leela采纳,获得10
36秒前
36秒前
科研通AI2S应助Long采纳,获得10
39秒前
SnowIng发布了新的文献求助15
41秒前
ljm完成签到,获得积分10
41秒前
43秒前
46秒前
46秒前
47秒前
yeexue发布了新的文献求助10
47秒前
真臻发布了新的文献求助10
50秒前
鲜艳的白开水完成签到,获得积分10
50秒前
50秒前
51秒前
123完成签到,获得积分10
51秒前
大个应助tigger采纳,获得10
52秒前
53秒前
寂寞的向真完成签到 ,获得积分10
54秒前
56秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458771
求助须知:如何正确求助?哪些是违规求助? 3053518
关于积分的说明 9036928
捐赠科研通 2742726
什么是DOI,文献DOI怎么找? 1504524
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519