Identifying septic shock subgroups to tailor fluid strategies through multi-omics integration

感染性休克 计算生物学 组学 休克(循环) 计算机科学 医学 重症监护医学 生物 生物信息学 败血症 内科学
作者
Zhongheng Zhang,Lin Chen,Bin Sun,Zhanwei Ruan,Pan Pan,Wei-Min Zhang,Xuandong Jiang,Shaojiang Zheng,Shaowen Cheng,Lina Xian,Bingshu Wang,Jie Yang,Haifeng Zhang,Ping Xu,Zhitao Zhong,Lingxia Cheng,Hongying Ni,Yucai Hong
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:3
标识
DOI:10.1038/s41467-024-53239-9
摘要

Fluid management remains a critical challenge in the treatment of septic shock, with individualized approaches lacking. This study aims to develop a statistical model based on transcriptomics to identify subgroups of septic shock patients with varied responses to fluid strategy. The study encompasses 494 septic shock patients. A benefit score is derived from the transcriptome space, with higher values indicating greater benefits from restrictive fluid strategy. Adherence to the recommended strategy is associated with a hazard ratio of 0.82 (95% confidence interval: 0.64–0.92). When applied to the baseline hospital mortality rate of 16%, adherence to the recommended fluid strategy could potentially lower this rate to 13%. A proteomic signature comprising six proteins is developed to predict the benefit score, yielding an area under the curve of 0.802 (95% confidence interval: 0.752–0.846) in classifying patients who may benefit from a restrictive strategy. In this work, we develop a proteomic signature with potential utility in guiding fluid strategy for septic shock patients. Fluid management in septic shock lacks personalized approaches, which are critical for improving patient outcomes. Here, the authors show that a proteomic signature can help identify patients who may benefit from a restrictive fluid strategy, potentially reducing hospital mortality rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白白完成签到,获得积分10
刚刚
Lxy完成签到,获得积分10
刚刚
1秒前
橙子味完成签到 ,获得积分10
1秒前
2秒前
2秒前
dong完成签到,获得积分10
2秒前
3秒前
科研通AI5应助刘芸芸采纳,获得10
4秒前
baijiayi完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
song发布了新的文献求助10
5秒前
LEMON发布了新的文献求助10
6秒前
6秒前
Aha完成签到 ,获得积分10
6秒前
6秒前
乐乐应助狂野世立采纳,获得10
7秒前
yzz完成签到,获得积分10
7秒前
7秒前
SYLH应助曾水采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
陈佳琪发布了新的文献求助30
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
pluto应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
单复天完成签到,获得积分10
9秒前
9秒前
jgy应助科研通管家采纳,获得30
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
shouyu29应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762