Biomimetic Channels Design in Metal‐Organic Framework Enabling Highly Lithium‐Ion Conduction for Lithium‐Metal Batteries

锂(药物) 金属有机骨架 材料科学 金属锂 电导率 电解质 金属 化学工程 纳米技术 准固态 离子 无机化学 化学 电极 吸附 物理化学 有机化学 冶金 色素敏化染料 医学 工程类 内分泌学
作者
Xin Wang,Sheng Jin,Lu Shi,Nan Zhang,Jia Guo,Dianqu Zhang,Zhiliang Liu
出处
期刊:Small methods [Wiley]
标识
DOI:10.1002/smtd.202400968
摘要

Abstract Solid‐state electrolytes (SSEs) based on metal‐organic frameworks (MOFs) are an ideal material for constructing high‐performance lithium metal batteries (LMBs). However, the low ion conductivity and poor interface contact (especially at low temperatures) still seriously hinder its further application. Herein, inspired by the Na + /K + conduction in biology systems, a series (NH 2 , OH, NH‐(CH 2 ) 3 ‐SO 3 H)‐modified MIL‐53‐X as SSEs is reported. These functional groups are similar to anions suspended in biological ion channels, partially repelling anions while allowing cations to be effectively transported through pore channels. Subsequently, MIL‐53‐X with hierarchical pore structure (H‐MIL‐53‐X) is obtained by introducing lauric acid as a regulator, and then the effects of structural design and morphology control on its performance are explored. The conductivity of H‐MIL‐53‐NH‐SO 3 Li with multi‐level pore structure and modified by sulfonic acid groups reached 2.2 × 10 −3 S cm −1 at 25 °C, lithium‐ion transference number of 0.78. Besides, the H‐MIL‐53‐NH‐SO 3 Li still has an excellent conductivity of 10 −4 S cm −1 at −40 °C. Additionally, LiFePO 4 /Li batteries equipped with H‐MIL‐53‐NH‐SO 3 Li SSEs could operate stably for over 200 cycles at 0.1 C. The strategy of combining structural and morphological design of MOFs with biomimetic ion channels opens new avenues for the design of high‐performance SSEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑森林发布了新的文献求助30
刚刚
hu970发布了新的文献求助10
刚刚
刚刚
俭朴夜雪发布了新的文献求助30
刚刚
林上草应助lzj001983采纳,获得10
刚刚
小白完成签到,获得积分20
刚刚
药疯了完成签到,获得积分20
1秒前
桐桐应助123采纳,获得10
1秒前
风中寄云发布了新的文献求助10
1秒前
buuyoo发布了新的文献求助10
1秒前
zjudxn发布了新的文献求助10
1秒前
春夏爱科研完成签到,获得积分10
2秒前
飞翔的西红柿完成签到,获得积分10
2秒前
xzy完成签到,获得积分10
2秒前
L.发布了新的文献求助20
3秒前
Verdigris完成签到,获得积分10
4秒前
cindy完成签到,获得积分10
4秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
4秒前
金色热浪完成签到 ,获得积分10
4秒前
快去读文献完成签到,获得积分20
4秒前
斯文静曼完成签到,获得积分10
4秒前
4秒前
4秒前
拼搏思卉关注了科研通微信公众号
5秒前
5秒前
liudiqiu应助酷酷的起眸采纳,获得10
5秒前
研友_8yN60L发布了新的文献求助10
5秒前
所所应助VDC采纳,获得10
5秒前
xxq发布了新的文献求助30
5秒前
xzy发布了新的文献求助20
6秒前
Linanana完成签到,获得积分10
6秒前
6秒前
贾舒涵发布了新的文献求助10
6秒前
Sunrise完成签到,获得积分10
7秒前
HH完成签到,获得积分10
8秒前
科研通AI2S应助飞羽采纳,获得10
8秒前
风中寄云完成签到,获得积分20
8秒前
故意的傲玉应助毛慢慢采纳,获得10
8秒前
8秒前
小白发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759