Integrating Metal–Phenolic Networks-Mediated Separation and Machine Learning-Aided Surface-Enhanced Raman Spectroscopy for Accurate Nanoplastics Quantification and Classification

拉曼光谱 材料科学 人工智能 拉曼散射 激光诱导击穿光谱 鉴定(生物学) 聚苯乙烯 机器学习 纳米技术 生物系统 计算机科学 光谱学 复合材料 物理 光学 聚合物 植物 生物 量子力学
作者
Haoxin Ye,Shiyu Jiang,Yan Yan,Bin Zhao,Edward R. Grant,David D. Kitts,Rickey Y. Yada,Anubhav Pratap‐Singh,Alberto Baldelli,Tianxi Yang
出处
期刊:ACS Nano [American Chemical Society]
被引量:2
标识
DOI:10.1021/acsnano.4c08316
摘要

Increasing accumulation of nanoplastics across ecosystems poses a significant threat to both terrestrial and aquatic life. Surface-enhanced Raman scattering (SERS) is an emerging technique used for nanoplastics detection. However, the identification and classification of nanoplastics using SERS faces challenges regarding sensitivity and accuracy as nanoplastics are sparsely dispersed in the environment. Metal-phenolic networks (MPNs) have the potential to rapidly concentrate and separate various types and sizes of nanoplastics. SERS combined with machine learning may improve prediction accuracy. Herein, we report the integration of MPNs-mediated separation with machine learning-aided SERS methods for the accurate classification and high-precision quantification of nanoplastics, which is tailored to include the complete region of characteristic peaks across diverse nanoplastics in contrast to the traditional manual analysis of SERS spectra on a singular characteristic peak. Our customized machine learning system (e.g., outlier detection, classification, quantification) allows for the identification of detectable nanoplastics (accuracy 81.84%), accurate classification (accuracy > 97%), and sensitive quantification of various types of nanoplastics (polystyrene (PS), poly(methyl methacrylate) (PMMA), polyethylene (PE), and poly(lactic acid) (PLA)) down to ultralow concentrations (0.1 ppm) as well as accurate classification (accuracy > 92%) of nanoplastic mixtures at a subppm level. The effectiveness of this approach is substantiated by its ability to discern between different nanoplastic mixtures and detect nanoplastic samples in natural water systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丁小丁发布了新的文献求助10
1秒前
huang完成签到,获得积分10
1秒前
ptalala发布了新的文献求助10
1秒前
3秒前
4秒前
儒雅闭月发布了新的文献求助10
5秒前
情怀应助manman采纳,获得10
5秒前
上官若男应助大方百招采纳,获得10
5秒前
5秒前
orixero应助李海妍采纳,获得10
7秒前
7秒前
huang发布了新的文献求助10
7秒前
Hou发布了新的文献求助10
7秒前
8秒前
薇儿发布了新的文献求助10
8秒前
传奇3应助丁小丁采纳,获得10
9秒前
11111发布了新的文献求助10
10秒前
wz关闭了wz文献求助
10秒前
lv发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
耍酷书雁完成签到 ,获得积分10
13秒前
jackten发布了新的文献求助10
15秒前
16秒前
过时的明杰完成签到,获得积分10
17秒前
袁超完成签到,获得积分10
17秒前
qiu完成签到,获得积分10
17秒前
儒雅闭月完成签到,获得积分10
18秒前
claire完成签到,获得积分10
18秒前
一心科研完成签到,获得积分10
18秒前
大方百招发布了新的文献求助10
18秒前
橘橘子发布了新的文献求助30
20秒前
我是站长才怪应助yy采纳,获得10
20秒前
22秒前
应应发布了新的文献求助10
23秒前
23秒前
24秒前
怕黑行恶发布了新的文献求助10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310609
求助须知:如何正确求助?哪些是违规求助? 2943401
关于积分的说明 8514871
捐赠科研通 2618733
什么是DOI,文献DOI怎么找? 1431388
科研通“疑难数据库(出版商)”最低求助积分说明 664462
邀请新用户注册赠送积分活动 649626