Cardiovascular Disease Pathogenicity Predictor (CVD-PP): A Tissue-Specific In Silico Tool for Discriminating Pathogenicity of Variants of Unknown Significance in Cardiovascular Disease Genes

致病性 生物信息学 疾病 医学遗传学 生物 遗传学 生物信息学 内科学 医学 基因 微生物学
作者
Megan Ramaker,Jawan Abdulrahim,Kristin Corey,Megan Ramaker,Lydia Coulter Kwee,William E. Kraus,Svati H. Shah
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1161/circgen.123.004464
摘要

BACKGROUND: Interpretation of variants of uncertain significance (VUSs) remains a challenge in the care of patients with inherited cardiovascular diseases (CVDs); 56% of variants within CVD risk genes are VUS, and machine learning algorithms trained upon large data resources can stratify VUS into higher versus lower probability of contributing to a CVD phenotype. METHODS: We used ClinVar pathogenic/likely pathogenic and benign/likely benign variants from 47 CVD genes to build a predictive model of variant pathogenicity utilizing measures of evolutionary constraint, deleteriousness, splicogenicity, local pathogenicity, cardiac-specific expression, and population allele frequency. Performance was validated using variants for which the ClinVar pathogenicity assignment changed. Functional validation was assessed using prior studies in >900 identified VUS. The model utility was demonstrated using the Catheterization Genetics cohort. RESULTS: We identified a top-ranked model that accurately prioritized variants for which ClinVar clinical significance had changed (n=663; precision-recall area under the curve, 0.97) and performed well compared with conventional in silico methods. This model (CVD pathogenicity predictor) also had high accuracy in prioritizing VUS with functional effects in vivo (precision-recall area under the curve, 0.58). In Catheterization Genetics, there was a greater burden of higher CVD pathogenicity predictor scored VUS in individuals with dilated cardiomyopathy compared with controls ( P =8.2×10 − 15 ). Of individuals in Catheterization Genetics who harbored highly ranked CVD pathogenicity predictor VUS meeting clinical pathogenicity criteria, 27.6% had clinical evidence of disease. Variant prioritization using this model increased genetic diagnosis in Catheterization Genetics participants with a known clinical diagnosis of hypertrophic cardiomyopathy (7.8%–27.2%). CONCLUSIONS: We present a cardiac-specific model for prioritizing variants underlying CVD syndromes with high performance in discriminating the pathogenicity of VUS in CVD genes. Variant review and phenotyping of individuals carrying VUS of pathogenic interest support the clinical utility of this model. This model could also have utility in filtering variants as part of large-scale genomic sequencing studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fjkssadjk发布了新的文献求助10
2秒前
2秒前
一号完成签到,获得积分20
3秒前
帅气善斓应助称心奇迹采纳,获得10
3秒前
夜绒枭完成签到 ,获得积分10
3秒前
微笑芯发布了新的文献求助10
4秒前
但愿人长久关注了科研通微信公众号
4秒前
小憨锅发布了新的文献求助10
5秒前
包子发布了新的文献求助10
5秒前
张启凤完成签到,获得积分10
8秒前
天天快乐应助超帅的碱采纳,获得10
9秒前
9秒前
烂漫飞机发布了新的文献求助10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
木棉完成签到,获得积分10
10秒前
echoo完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
YT发布了新的文献求助10
14秒前
14秒前
15秒前
可爱的函函应助话语采纳,获得10
16秒前
静静完成签到,获得积分20
17秒前
peipei发布了新的文献求助10
18秒前
18秒前
健康的人生完成签到,获得积分10
18秒前
王一一发布了新的文献求助10
19秒前
哈基咪发布了新的文献求助10
19秒前
20秒前
20秒前
小憨锅完成签到,获得积分10
22秒前
22秒前
23秒前
失眠的以蓝完成签到,获得积分20
24秒前
bolin完成签到,获得积分10
25秒前
牛牛发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704982
求助须知:如何正确求助?哪些是违规求助? 5160109
关于积分的说明 15243509
捐赠科研通 4858841
什么是DOI,文献DOI怎么找? 2607448
邀请新用户注册赠送积分活动 1558519
关于科研通互助平台的介绍 1516177