Driving Fatigue Detection Based on Hybrid Electroencephalography and Eye Tracking

脑电图 眼动 计算机科学 人工智能 跟踪(教育) 眼电学 计算机视觉 眼球运动 神经科学 心理学 教育学
作者
Zequan Lian,Tao Xu,Zhen Yuan,Junhua Li,Nitish V. Thakor,Hongtao Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3446952
摘要

EEG-based unimodal method has demonstrated substantial success in the detection of driving fatigue. Nonetheless, the data from a single modality might be not sufficient to optimize fatigue detection due to incomplete information. To address this limitation and enhance the performance of driving fatigue detection, a novel multimodal architecture combining electroencephalography (EEG) and eye tracking data was proposed in this study. Specifically, EEG and eye tracking data were separately input into encoders, generating two one-dimensional (1D) features. Subsequently, these 1D features were fed into a cross-modal predictive alignment module to improve fusion efficiency and two 1D attention modules to enhance feature representation. Furthermore, the fused features were recognized by a linear classifier. To evaluate the effectiveness of the proposed multimodal method, comprehensive validation tasks were conducted, including intra-session, cross-session, and cross-subject evaluations. In the intra-session task, the proposed architecture achieves an exceptional average accuracy of 99.93%. Moreover, in the cross-session task, our method results in an average accuracy of 88.67%, surpassing the performance of EEG-only approach by 8.52%, eye tracking-only method by 5.92%, multimodal deep canonical correlation analysis (DCCA) technique by 0.42%, and multimodal deep generalized canonical correlation analysis (DGCCA) approach by 0.84%. Similarly, in the cross-subject task, the proposed approach achieves an average accuracy of 78.19%, outperforming EEG-only method by 5.87%, eye tracking-only approach by 4.21%, DCCA method by 0.55%, and DGCCA approach by 0.44%. The experimental results conclusively illustrate the superior effectiveness of the proposed method compared to both single modality approaches and canonical correlation analysis-based multimodal methods. Overall, this study provides a new and effective strategy for driving fatigue detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助詹姆斯采纳,获得10
1秒前
物理化学henxing完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
成就飞柏发布了新的文献求助10
4秒前
大模型应助周同学采纳,获得10
5秒前
甜甜的莞完成签到,获得积分10
6秒前
gege完成签到,获得积分10
6秒前
7秒前
俗签发布了新的文献求助10
9秒前
爱学习发布了新的文献求助10
10秒前
子车茗应助QHY采纳,获得10
10秒前
10秒前
斯文的寄柔完成签到,获得积分10
11秒前
枝挽完成签到,获得积分10
12秒前
12秒前
afrex完成签到,获得积分10
12秒前
晓婷婷完成签到 ,获得积分10
12秒前
13秒前
清风明月完成签到,获得积分10
13秒前
Megan完成签到,获得积分10
13秒前
13秒前
祖宗别惹他完成签到,获得积分20
13秒前
15秒前
15秒前
15秒前
欢呼忆丹完成签到 ,获得积分10
15秒前
你比我笨发布了新的文献求助10
15秒前
迷航发布了新的文献求助10
16秒前
17秒前
Meyako完成签到 ,获得积分10
17秒前
爱学习完成签到,获得积分10
17秒前
情怀应助Megan采纳,获得10
17秒前
kk发布了新的文献求助10
18秒前
ferry123完成签到,获得积分10
19秒前
lan发布了新的文献求助10
19秒前
来者完成签到,获得积分10
20秒前
20秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145621
求助须知:如何正确求助?哪些是违规求助? 2797097
关于积分的说明 7822848
捐赠科研通 2453435
什么是DOI,文献DOI怎么找? 1305652
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601469