Using a Deep Learning-Based Visual Computational Model to Identify Cognitive Strategies in Matrix Reasoning

计算机科学 认知 人工智能 计算模型 机器学习 认知心理学 心理学 神经科学
作者
Zhimou Wang,Yaohui Liu,Peida Zhan
出处
期刊:Journal of Educational and Behavioral Statistics [SAGE]
标识
DOI:10.3102/10769986241268907
摘要

Constructive matching and response elimination strategies are two primarily used cognitive strategies in Raven’s Advanced Progressive Matrices (APM), a valid measurement instrument of general intelligence. Identifying strategies is necessary for conducting studies on the relationship between cognitive strategy and other cognitive factors and for cognitive strategy training. However, the strategy identification method used in research is either subjective, or the information in the behavior data is not fully utilized, or it is limited by the size of the sample and cannot be widely used. Therefore, this study trained a convolutional neural network-based visual computational model (CVC) for cognitive strategy identification based on eye movement images. Focusing on the APM, the trained CVC can be used for strategy identification by learning and mining the pattern information in the eye movement images with predefined training labels from a psychometric model. An empirical study was conducted to illustrate the training and application of the CVC. Utilizing the trained CVC and a developed graphical user interface application, the primary finding of the study reveals a high level of agreement in strategy identification between the CVC and the psychometric model, as well as between the CVC and expert judgment. This implies that, akin to the psychometric model, the CVC can be used to identify the two cognitive strategies of constructive matching and response elimination. Overall, the proposed deep learning-based model follows the data-driven perspective and provides a new way of studying cognitive strategy in the APM by presenting objective and quantitative identification results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助shouying采纳,获得10
2秒前
深情安青应助灵巧书文采纳,获得30
2秒前
小小雨泪发布了新的文献求助10
3秒前
耶耶耶完成签到 ,获得积分10
3秒前
唯美完成签到,获得积分10
7秒前
张铁柱完成签到,获得积分10
8秒前
hsq15123完成签到 ,获得积分10
11秒前
11秒前
优秀的牛青完成签到,获得积分10
13秒前
hyfan完成签到,获得积分10
15秒前
灵巧书文发布了新的文献求助30
15秒前
小苹果完成签到,获得积分10
16秒前
连牙蓝上了吗完成签到 ,获得积分10
17秒前
研友_nV2ROn完成签到,获得积分10
17秒前
小小雨泪发布了新的文献求助10
18秒前
18秒前
杨123完成签到 ,获得积分10
19秒前
心灵美发布了新的文献求助10
22秒前
phoenix发布了新的文献求助10
23秒前
动听幻儿完成签到,获得积分10
25秒前
华仔应助小小雨泪采纳,获得10
25秒前
komisan完成签到 ,获得积分10
26秒前
乌兰巴托没有海完成签到,获得积分10
28秒前
传奇3应助phoenix采纳,获得10
29秒前
Zj完成签到,获得积分10
29秒前
zhangsenbing完成签到,获得积分0
29秒前
33秒前
33秒前
1250241652完成签到,获得积分10
33秒前
lzh应助动听幻儿采纳,获得10
34秒前
lkl完成签到 ,获得积分10
34秒前
淡漠完成签到 ,获得积分10
34秒前
daytek完成签到,获得积分10
35秒前
37秒前
小小雨泪发布了新的文献求助10
37秒前
WW完成签到,获得积分10
37秒前
w_应助莫华龙采纳,获得20
38秒前
Neo完成签到,获得积分10
38秒前
孤独的问凝完成签到,获得积分10
38秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997864
求助须知:如何正确求助?哪些是违规求助? 2658490
关于积分的说明 7196617
捐赠科研通 2293953
什么是DOI,文献DOI怎么找? 1216325
科研通“疑难数据库(出版商)”最低求助积分说明 593516
版权声明 592888