Understanding deep learning across academic domains: A structural equation modelling approach with a partial least squares approach

结构方程建模 偏最小二乘回归 计算机科学 人工智能 应用数学 机器学习 数学
作者
Qamrul Islam,Syed Md Faisal Ali Khan
出处
期刊:International journal of innovative research and scientific studies [International Journal of Innovative Research and Scientific Studies]
卷期号:7 (4): 1389-1407 被引量:1
标识
DOI:10.53894/ijirss.v7i4.3408
摘要

This study investigates the impact of deep learning on various academic disciplines including arts and humanities, social sciences, engineering, health and management to explore its implications on academic achievement, research and societal relevance. This study shows that deep learning impacts social sciences, engineering, health, the arts, the humanities and management disciplines. Deep learning combines artificial intelligence and machine learning revolutionizing the teaching and learning experience. This research carefully explores the implications of deep learning on academic achievement, research and societal relevance, hence filling gaps in understanding deep learning in diverse academic domains. The quantitative research approach collects data from top-ranked global university students producing 971 valid responses from different academic disciplines. SEM and CFA were employed to validate the measurement model, thereby providing a robust statistical foundation for the study. This study illustrates that diverse academic domains have strong and positive relationships between deep learning, academic influence, research enhancement and social relevance. However, the observation of deep learning has a greater impact on the field of science and technology. The findings of this study emphasize ethical frameworks, model interpretability and responsible resource allocation in deep learning integration. This research guides teachers, policymakers and institutions to maximize the benefits of deep learning in diverse academic fields by emphasizing ethical considerations, interdisciplinary collaboration and long-term planning for responsible and effective integration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卢雨生完成签到,获得积分10
刚刚
Twilight发布了新的文献求助10
1秒前
满意的惮完成签到 ,获得积分10
2秒前
2秒前
机智的友容完成签到 ,获得积分10
2秒前
3秒前
活力的以寒完成签到 ,获得积分10
3秒前
Harper完成签到,获得积分10
4秒前
4秒前
贪玩曼梅应助幸福安康采纳,获得10
6秒前
高无怨发布了新的文献求助30
9秒前
竹竹完成签到,获得积分10
9秒前
三和小神发布了新的文献求助10
9秒前
10秒前
李健的小迷弟应助wing采纳,获得10
14秒前
旦皋完成签到 ,获得积分10
14秒前
粥小周发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
LWS666发布了新的文献求助10
16秒前
hhh完成签到,获得积分20
18秒前
21秒前
啦啦啦完成签到 ,获得积分10
21秒前
科研小白完成签到,获得积分10
21秒前
一木完成签到,获得积分10
22秒前
22秒前
hanggg完成签到,获得积分10
22秒前
俊杰完成签到,获得积分20
22秒前
dandna完成签到 ,获得积分10
23秒前
迷路以筠完成签到,获得积分10
24秒前
粥小周完成签到,获得积分10
25秒前
hanggg发布了新的文献求助10
25秒前
哆啦A梦发布了新的文献求助20
26秒前
西瓜啵啵完成签到,获得积分10
26秒前
susu完成签到 ,获得积分10
27秒前
hanhuikoo发布了新的文献求助10
27秒前
俊杰发布了新的文献求助10
28秒前
lwl666完成签到,获得积分10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572296
求助须知:如何正确求助?哪些是违规求助? 3142501
关于积分的说明 9448015
捐赠科研通 2843973
什么是DOI,文献DOI怎么找? 1563103
邀请新用户注册赠送积分活动 731630
科研通“疑难数据库(出版商)”最低求助积分说明 718640