Abdominal perfusion pressure is critical for survival analysis in patients with intra-abdominal hypertension: mortality prediction using incomplete data

医学 倾向得分匹配 插补(统计学) 缺少数据 内科学 重症监护医学 机器学习 计算机科学
作者
Xu Liang,Weijie Zhao,Jiao He,Siyu Hou,Jialin He,Yan Zhuang,Ying Wang,Hua Yang,Jingjing Xiao,Yuan Qiu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:2
标识
DOI:10.1097/js9.0000000000002026
摘要

Background: Abdominal perfusion pressure (APP) is a salient feature in the design of a prognostic model for patients with intra-abdominal hypertension (IAH). However, incomplete data significantly limits the size of the beneficiary patient population in clinical practice. Using advanced artificial intelligence methods, we developed a robust mortality prediction model with APP from incomplete data. Methods: We retrospectively evaluated the patients with IAH from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Incomplete data were filled in using generative adversarial imputation nets (GAIN). Lastly, demographic, clinical, and laboratory findings were combined to build a 7-day mortality prediction model. Results: We included 1354 patients in this study, of which 63 features were extracted. Data imputation with GAIN achieved the best performance. Patients with an APP< 60 mmHg had significantly higher all-cause mortality within 7 to 90 days. The difference remained significant in long-term survival even after propensity score matching (PSM) eliminated other mortality risks between groups. Lastly, the built machine learning model for 7-day modality prediction achieved the best results with an AUC of 0.80 in patients with confirmed IAH outperforming the other four traditional clinical scoring systems. Conclusions: APP reduction is an important survival predictor affecting the survival prognosis of patients with IAH. We constructed a robust model to predict the 7-day mortality probability of patients with IAH, which is superior to the commonly used clinical scoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助刘岩松采纳,获得10
刚刚
刚刚
1秒前
xiaofan完成签到,获得积分20
1秒前
宋二庆完成签到,获得积分10
1秒前
1秒前
咸鱼好忙发布了新的文献求助30
2秒前
无情的函发布了新的文献求助10
2秒前
小巧吐司发布了新的文献求助10
2秒前
小王完成签到,获得积分10
2秒前
咖啡豆完成签到,获得积分10
2秒前
小吴完成签到,获得积分10
3秒前
潦草小狗完成签到,获得积分10
3秒前
3秒前
4秒前
神勇雨双完成签到,获得积分10
4秒前
4秒前
阿玉发布了新的文献求助10
4秒前
5秒前
科研小菜完成签到,获得积分10
5秒前
5秒前
李健应助古月采纳,获得10
5秒前
lic完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助小王采纳,获得10
6秒前
6秒前
yydragen应助XHT采纳,获得30
7秒前
橙汁完成签到,获得积分20
7秒前
结实缘郡完成签到,获得积分10
7秒前
深情安青应助对照采纳,获得10
7秒前
rain完成签到 ,获得积分10
7秒前
JamesPei应助研友_nPoDRL采纳,获得10
8秒前
踏雪无痕发布了新的文献求助10
8秒前
lxy发布了新的文献求助10
8秒前
科研小菜发布了新的文献求助10
8秒前
9秒前
9秒前
khurram发布了新的文献求助10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600