Abdominal perfusion pressure is critical for survival analysis in patients with intra-abdominal hypertension: mortality prediction using incomplete data

医学 倾向得分匹配 插补(统计学) 缺少数据 内科学 重症监护医学 机器学习 计算机科学
作者
Xu Liang,Weijie Zhao,Jiao He,Siyu Hou,Jialin He,Yan Zhuang,Ying Wang,Hua Yang,Jingjing Xiao,Yuan Qiu
出处
期刊:International Journal of Surgery [Elsevier]
被引量:4
标识
DOI:10.1097/js9.0000000000002026
摘要

Background: Abdominal perfusion pressure (APP) is a salient feature in the design of a prognostic model for patients with intra-abdominal hypertension (IAH). However, incomplete data significantly limits the size of the beneficiary patient population in clinical practice. Using advanced artificial intelligence methods, we developed a robust mortality prediction model with APP from incomplete data. Methods: We retrospectively evaluated the patients with IAH from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Incomplete data were filled in using generative adversarial imputation nets (GAIN). Lastly, demographic, clinical, and laboratory findings were combined to build a 7-day mortality prediction model. Results: We included 1354 patients in this study, of which 63 features were extracted. Data imputation with GAIN achieved the best performance. Patients with an APP< 60 mmHg had significantly higher all-cause mortality within 7 to 90 days. The difference remained significant in long-term survival even after propensity score matching (PSM) eliminated other mortality risks between groups. Lastly, the built machine learning model for 7-day modality prediction achieved the best results with an AUC of 0.80 in patients with confirmed IAH outperforming the other four traditional clinical scoring systems. Conclusions: APP reduction is an important survival predictor affecting the survival prognosis of patients with IAH. We constructed a robust model to predict the 7-day mortality probability of patients with IAH, which is superior to the commonly used clinical scoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抹茶泡泡发布了新的文献求助50
1秒前
HMethod完成签到 ,获得积分10
1秒前
zhangnan发布了新的文献求助10
2秒前
2秒前
2秒前
小民完成签到,获得积分10
3秒前
3秒前
打烊完成签到,获得积分10
3秒前
shukq发布了新的文献求助10
4秒前
轨迹应助long采纳,获得50
4秒前
zz发布了新的文献求助50
5秒前
genge发布了新的文献求助10
5秒前
科研渣渣发布了新的文献求助10
6秒前
ding应助研友_LpvQlZ采纳,获得10
6秒前
6秒前
123发布了新的文献求助30
6秒前
852应助云为翳采纳,获得10
6秒前
希望天下0贩的0应助Darsine采纳,获得10
7秒前
怕黑一斩完成签到,获得积分20
7秒前
清风发布了新的文献求助10
7秒前
8秒前
安详苠发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
知虾完成签到 ,获得积分10
9秒前
9秒前
10秒前
zhuyanqi完成签到,获得积分10
10秒前
10秒前
10秒前
yiyiy9完成签到,获得积分10
11秒前
12秒前
坚定晓兰完成签到,获得积分10
12秒前
Galen完成签到,获得积分20
13秒前
13秒前
小马甲应助zhangnan采纳,获得10
14秒前
竞鹤发布了新的文献求助10
14秒前
Imstemcell发布了新的文献求助10
14秒前
15秒前
Wynne发布了新的文献求助80
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785018
求助须知:如何正确求助?哪些是违规求助? 5684842
关于积分的说明 15466115
捐赠科研通 4913942
什么是DOI,文献DOI怎么找? 2645068
邀请新用户注册赠送积分活动 1592871
关于科研通互助平台的介绍 1547270